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WHAT IS CLIMATE RISK?

Climate risk: "risk" created or enhanced by the impacts of
climate change
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WHAT IS CLIMATE RISK?

Climate risk: "risk" created or enhanced by the impacts of
climate change

Strong interactions between these impacts and broader
socioeconomic dynamics results in complex dynamics.
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CLIMATE IMPACTS ARE DIVERSE

  
Source: Four Twenty Seven and the New York Times 6 / 58

https://www.nytimes.com/2021/03/25/learning/whats-going-on-in-this-graph-global-climate-risks.html


CLIMATE RISKS ARE WORSENING
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WHAT IS RISK?

8 / 58



WHAT IS RISK?
Intuitively: "Risk" is the possibility of loss, damages, or harm.

Risk = Probability of Hazard × Damages From Event
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WHAT IS RISK?
Intuitively: "Risk" is the possibility of loss, damages, or harm.

Things we don't think of as "risk":

Good or neutral outcomes

Deterministic outcomes

Risk = Probability of Hazard × Damages From Event
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SOME CARTOONS ABOUT RISK

  
Source: XKCD 2107 10 / 58

https://xkcd.com/2107/


SOME CARTOONS ABOUT RISK

  
Source: XKCD 1252 11 / 58

https://xkcd.com/1252/


Common framework:

Risk as a combination of

Hazard

Exposure

Vulnerability

Response (Simpson et al
(2021))

  
Source: Simpson et al (2021)

WHAT IS RISK?
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https://doi.org/10.1016/j.oneear.2021.03.005


DEFINING CLIMATE RISK

Climate Risk: Changes in risk stemming from the impacts of or
response to climate change.
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Hazards

Drought/flooding

Extreme temperatures

Sea level rise

Others!

Exposure/Vulnerability

Compound events

Urbanization

Land Use, Land Cover
Change

DEFINING CLIMATE RISK

Climate Risk: Changes in risk stemming from the impacts of or
response to climate change.
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MOTIVATING QUESTIONS

1. What are the potential impacts of climate change?

2. What can we say about their uncertainties?

3. What are the impacts of those uncertainties on the performance
of risk-management strategies?

14 / 58



UNCERTAINTY AND PROBABILITY
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UNCERTAINTY AND RISK ANALYSIS

Uncertainty enters into the hazard-exposure-vulnerability-
response model in a few ways:

Uncertain hazards

Uncertainty in model estimates of exposure or vulnerability

Uncertainty in responses
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BUT...

What exactly do we mean by uncertainty?

Glib answer: Uncertainty is a lack of certainty!
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BUT...

What exactly do we mean by uncertainty?

Glib answer: Uncertainty is a lack of certainty!

Maybe better: Uncertainty refers to an inability to exactly
describe current or future states.
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TWO CATEGORIES OF UNCERTAINTY

Aleatory Uncertainty: Uncertainty resulting from inherent
randomness

Epistemic Uncertainty: Uncertainty resulting from lack of
knowledge
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TWO CATEGORIES OF UNCERTAINTY

Aleatory Uncertainty: Uncertainty resulting from inherent
randomness

Epistemic Uncertainty: Uncertainty resulting from lack of
knowledge

The lines between aleatory and epistemic uncertainty are not
always clear! This has implications for modeling and risk
analysis.
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ON EPISTEMIC UNCERTAINTY

  
Source: XKCD 2440
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https://xkcd.com/2440


UNCERTAINTY AND PROBABILITY

We often represent or describe uncertainties in terms of
probabilities:

Long-run frequency of an event (frequentist)

Degree of belief that a proposition is true (Bayesian)
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CONFIDENCE VS. CREDIBLE INTERVALS

The difference between the frequentist and Bayesian
perspectives can be illustrated through the difference in how
both conceptualize uncertainty in estimates.
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A Bayesian credible
interval for some random
quantity is conceptually
straightforward:

An -credible interval is an
interval with an %
probability of containing
the realized or "true" value.
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CONFIDENCE VS. CREDIBLE INTERVALS

α

α
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https://en.wikipedia.org/wiki/Darts


CONFIDENCE VS. CREDIBLE INTERVALS

However, this notion breaks down with the frequentist
viewpoint: there is some "true value" for the associated
estimate based on long-run frequencies.

With this view, it is incoherent to talk about probabilities
corresponding to parameters. Instead, the key question is how
frequently (based on repeated analyses of different datasets)
your estimates are "correct".
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CONFIDENCE VS. CREDIBLE INTERVALS

In other words, the confidence level  expresses the pre-
experimental frequency by which a confidence interval will
contain the true value.

So for a 95% confidence interval, there is a 5% chance that a
given sample was an outlier and the interval is inaccurate.

α%
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To understand frequentist
confidence intervals, think of
horseshoes! The post is a
fixed target, and my accuracy
as a horseshoe thrower
captures how confident I am
that I will hit the target with
any given toss.

Source: https://www.wikihow.com/Throw-a-

Horseshoe

CONFIDENCE VS. CREDIBLE INTERVALS
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https://www.wikihow.com/Throw-a-Horseshoe


But once I make the
throw, I've either hit or
missed.

Generating a confidence
interval is like throwing a
horseshoe with a certain
(pre-experimental) degree
of accuracy.

Source: https://www.wikihow.com/Throw-a-

Horseshoe

CONFIDENCE VS. CREDIBLE INTERVALS
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https://www.wikihow.com/Throw-a-Horseshoe


PROBABILITY DISTRIBUTIONS

Probabilities are often represented using a probability
distribution, which are parameterized by a probability density
function.

Normal (Gaussian) Distribution: mean , variance 

Poisson Distribution: rate 

Binomial Distribution: # trials , probability of success 

Generalized Extreme Value Distribution: location , scale ,
shape 

μ σ2

λ

n p

μ σ

ξ
27 / 58



PROBABILITY MODELS

A key consideration in uncertainty and risk analysis is defining
an appropriate probability model for the data.

Many "default" approaches, such as linear regression, assume
normal distributions and independent and identically-
distributed residuals.
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skew (more samples on
one side of the mean than
the other)

DEVIATIONS FROM NORMALITY

Some typical ways in which these assumptions can fail:
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skew

fat tails (probability of
extremes)

DEVIATIONS FROM NORMALITY

Some typical ways in which these assumptions can fail:
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skew

fat tails

(auto-)correlations

DEVIATIONS FROM NORMALITY

Some typical ways in which these assumptions can fail:
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DIAGNOSING QUALITY OF FIT

How can we know if a proposed probability model is
appropriate for a data set?
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DIAGNOSING QUALITY OF FIT

Visual inspection often breaks down: our brains are very good
at imposing structure (look up "gestalt principles").
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If the quantiles match, the
points will be roughly along
the diagonal line, e.g. this
comparison of normally-
distributed data with a
normal distribution.

QUANTILE-QUANTILE PLOTS

One useful tool is a quantile-quantile (Q-Q) plot, which
compares quantiles of two distributions.
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QUANTILE-QUANTILE PLOTS

If the points are below/above the 1:1 line, the theoretical
distribution is over/under-predicting the associated quantiles.
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CUMULATIVE DISTRIBUTION FUNCTIONS

Q-Q plots show similar information to a Cumulative
Distribution Function (CDF) plot.
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AUTOCORRELATION

Another critical question is if the samples are correlated or
independent. For a time series, this can be tested using
autocorrelation (or cross-correlation for multiple variables).

37 / 58



KEY TAKEAWAY

Specifying the probability model is important — getting this too
wrong can bias resulting inferences and projections.

There's no black-box workflow for this: try exploring different
methods, relying on domain knowledge, and looking at different
specifications until you convince yourself something makes
sense.
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MONTE CARLO
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MONTE CARLO SIMULATION

A common problem in risk/uncertainty analysis is uncertainty
propagation: what is the impact of input uncertainties on
system outcomes? The most basic way to approach this is
through Monte Carlo simulation.

System or 
Statistical Model

Input 
Uncertainties Outcomes
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MONTE CARLO SIMULATION

Monte Carlo simulation involves:

1. Sampling input(s) from probability distribution(s);

2. Simulating the quantity of interest;

3. Aggregating the results (if desired).
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MONTE CARLO SIMULATION

Monte Carlo simulation involves:

1. Sampling input(s) from probability distribution(s);

2. Simulating the quantity of interest;

3. Aggregating the results (if desired).

Note that steps 1 and 2 require the ability to generate data
from the probability model (or we say that the model is
generative). This is not always the case!
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MONTE CARLO SIMULATION

Monte Carlo is a very useful method for calculating complex
and high-dimensional integrals (such as expected values),
since an integral is an -dimensional area:

1. Sample uniformly from the domain;

2. Compute how many samples are in the area of interest.

n

42 / 58



MONTE CARLO (FORMALLY)

We can formalize this common use of Monte Carlo as the
computation of the expected value of a random quantity , 

, over a domain :
f (Y )

Y ∼ p D

μ = E[f (Y )] =  f (y)p(y)dy.∫
D
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MONTE CARLO (FORMALLY)

Generate  independent and identically distributed values 
. Then the sample estimate is

n

Y  , … , Y  1 n

 =μ~   f (Y  )
n

1

i=1
∑
n

i
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THE LAW OF LARGE NUMBERS

Monte Carlo works because of the large of law numbers:

If

1.  is a random variable and its expectation exists and

2.  are independently and identically distributed

Then by the strong law of large numbers:

Y

Y  , … , Y  1 n

  →μ~n μ almost surely as n → ∞
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MONTE CARLO ESTIMATORS ARE UNBIASED

Notice that the sample mean  is itself a random variable.

With some assumptions (the mean of  exists and  has finite
variance), the expected Monte Carlo estimate is

This means that the Monte Carlo estimate is an unbiased
estimate of the mean.

  μ~n

Y Y

E[   ] =μ~n   E[f (Y  )] =
n

1

i=1
∑
n

i  nμ =
n

1
μ
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OK, SO THAT SEEMS EASY...

The basic Monte Carlo algorithm is straightforward: draw a
large enough set of samples from your input distribution,
simulate and/or compute your test statistic for each of those
samples, and the sample value will necessarily converge to the
population value.

However:

Are your input distributions correctly specified (including
correlations across inputs)?

How large is "large enough"? 47 / 58



MONTE CARLO ERROR

This raises a key question: how can we quantify the standard
error of a Monte Carlo estimate?

The variance of this estimator is:

So the standard error  decreases approximately as  as
 increases.

 =σ~n
2 Var   =(μ~n) E (   − μ) =( μ~n 2)  

n

σ  y
2

 σ  n
~ 1/  n

n
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MONTE CARLO ERROR

In other words, if we want to decrease the Monte Carlo error by
10x, we need 100x additional samples. This is not an ideal
method for high levels of accuracy.

Monte Carlo is an extremely bad method. It should only be
used when all alternative methods are worse.

— Sokal, Monte Carlo Methods in Statistical Mechanics, 1996
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MONTE CARLO ERROR

In other words, if we want to decrease the Monte Carlo error by
10x, we need 100x additional samples. This is not an ideal
method for high levels of accuracy.

Monte Carlo is an extremely bad method. It should only be
used when all alternative methods are worse.

— Sokal, Monte Carlo Methods in Statistical Mechanics, 1996

The thing is, though – for a lot of problems, all alternative
methods are worse!
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REPORTING MONTE CARLO UNCERTAINTY

An -credible interval for a Monte Carlo estimate is
straightforward: compute an empirical interval containing %
of the Monte Carlo sample values (e.g. for a 95% credible
interval, take the range between the 0.025 and 0.975
quantiles).

α

α
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MONTE CARLO CONFIDENCE INTERVALS

To estimate confidence intervals, we can rely on the variance
estimate from before.

For "sufficiently large" sample sizes , the central limit
theorem says that the distribution of the error  can be
approximated by a normal distribution,

n

  − μ∣μ~n ∣

  − μ →∣μ~n ∣ N 0,  (
n

σ  y
2 )
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MONTE CARLO CONFIDENCE INTERVALS

This means that we can construct confidence intervals using
the inverse cumulative distribution function for the normal
distribution.

The -confidence interval is:

For example, the 95% CI is 

α

  ±μ~n Φ 1 −   .−1 (
2
α)

 n

σ  y

  ±μ~n 1.96  /  .σ  y n
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MONTE CARLO CONFIDENCE INTERVALS

Of course, we typically don't know . We can replace this with
the sample standard deviation, though this will increase the
uncertainty of the estimate.

But this gives us a sense of how many more samples we might
need to get a more precise estimate.

σ  y
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A DICE EXAMPLE (CLICHE ALERT!)

What is the probability of rolling 4 dice for a total of 19?

Let's solve this using Monte Carlo.
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A DICE EXAMPLE (CLICHE ALERT!)

What is the probability of rolling 4 dice for a total of 19?

Let's solve this using Monte Carlo.

Step 1: Run  trials (say, 10,000) trials of 4 dice rolls each.

Step 2: Compute the frequency of trials for which the sum is 19,
e.g. compute the sample average of the indicator function

n

  I(sum of 4 dice =
n

1

i=1
∑
n

19).
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A DICE EXAMPLE

How does this estimate evolve as we add more samples?

Note: the true value (given by the red line) is 4.32%.
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MORE COMPLEX MONTE CARLO

We won't spend too much more time here, but for more
complex problems, the sample size needed to constrain the
Monte Carlo error can be computationally burdensome.

This is typically addressed with more sophisticated sampling
schemes which are designed to reduce the variance from
random sampling, causing the estimate to converge faster.

Importance sampling

Quasi-random sampling (e.g. Sobol)
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KEY TAKEAWAYS (MONTE CARLO)

The basic Monte Carlo algorithm is a simple way to propagate
uncertainties and compute approximate estimates of statistics,
though its rate of convergence is poor.

Can also be used for general simulation (which we will do later)
and optimization.

Note: Monte Carlo is a fundamentally parametric statistical
approach, that is, it relies on the specification of the data-
generation process, including all parameter values.

What if we don't know these specifications a priori? This is the
fundamental challenge of uncertainty quantification, which we
will discuss more throughout this course. 57 / 58



UPCOMING SCHEDULE

Wednesday: Discuss Simpson (2021) and lab on testing for
normality and Monte Carlo (featuring The Price is Right!).

Next Monday: Representing climate uncertainties and
implications for risk management.
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