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CoasTAL FLooD Risk OVERVIEW
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CoasTAL FLooD Risk

Coastal flooding: this is our motivating problem in this course.

Let's think about this through our hazard-exposure-
vulnerability-response risk model.
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How ARE LocAL HiGH WATER LEVELS
MEASURED?

Tide gauge data comes In
many "flavors", based on
local tidal and diurnal
cycles.

Mean Highest High Water

(MHHW) is the typical

"extreme" sea [eve[ datu m. Source: Inside the Eye Blog, National
Hurricane Center, 01-29-2016 5/42



https://noaanhc.files.wordpress.com/2016/02/tide_plot.jpg

CONTRIBUTORS TO EXTREME SEA LEVELS

Physical Factors Directly Contributing to Coastal Flood Exposure
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https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report-sections.html

SEA LEVEL RISE
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CoNTRIBUTORS TO GLoBAL MEAN SLR
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https://www.nature.com/articles/ngeo544

LocAaL SEA LEVELS HAVE BEEN INCREASING
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Figure i1s from a 2009
paper, but these trends
have only accelerated since
then.

Why is the Baltic stagnant?

Source: Milne et al (2009)
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https://www.nature.com/articles/ngeo544

SpATIAL SLR IMPACT OF IcE SHEET MELT

Ice sheet impact on SLR depends on gravitational effect of the
Ice.
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INCOMPLETE ACCOUNTING OF PasT SLR

We can't actually account

for the entirety of observed
SLR.

Source: IPCC AR6 Working Group 1, Chapter
9(2021)
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https://www.ipcc.ch/report/ar6/wg1/

OTHER CONTRIBUTORS TO RELATIVE SEA
LEVEL RISE

o Glacial Isostatic Adjustment (GIA)

e Subsidence
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OTHER CONTRIBUTORS TO RELATIVE SEA
LEVEL RISE

o Glacial Isostatic Adjustment (GIA)

e Subsidence
These effects can be very large depending on the location.

For example, Norfolk (VA)'s relative SLR is primarily driven by
subsidence due to aquifier depletion.
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IPCC PRroJECTIONS OF FUTURE SLR

Projections of future SLR to and past 2100 depend strongly on
the associated level of future warming.
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https://www.ipcc.ch/report/ar6/wg1/

SEA LEVEL Rise AFTER PEAK W ARMING

Due to ocean heat uptake
and circulation and
cumulative warming of ice
sheets, sea levels will
continue to rise after
warming ceases.

Source: IPCC AR6 Working Group 1,
Technical Summary (2021)
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https://www.ipcc.ch/report/ar6/wg1/

SENSITIVITY OF FUTURE SL 1O EMISSIONS

PATHWAY

When we are likely to hit a
certain level of GMSL is
strongly dependent on the
emissions trajectory, but
there i1s considerable
uncertainty.

Source: IPCC AR6 Working Group 1,
Technical Summary (2021)
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https://www.ipcc.ch/report/ar6/wg1/

ADDITIONAL UNCERTAIN PROCESSES

These projections may underestimate some additional
processes or uncertainties — remember, we can't fully explain
recent SLR by adding up our estimates of contributions from
individual processes!
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UNSTABLE IceE SHEET MELTING DYNAMICS
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Source: IPCC AR6 Working Group 1, Technical Summary (2021)
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https://www.ipcc.ch/report/ar6/wg1/

lce SHEET DYNAMIcs CAN AcceLERATE SLR

Probability density
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https://dx.doi.org/10.1007/s10584-017-2039-4

Key DRIVERS OF FUTURE SLR VARIABILITY

(a) RCP2.6 Feature Importances
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Source: Hough & Wong (2022)


https://doi.org/10.5194/ascmo-8-117-2022

STORM SURGE
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EXTREME SEA LEVELS

Extreme sea levels are a combination of tidal extremes and
(often) storm surge, or "storm tides".
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EXTREME SEA LEVELS

Extreme sea levels are a combination of tidal extremes and
(often) storm surge, or "storm tides".

Storm surge Is the result of winds pushing water against the

shore. Physical modeling of surges is complex — topography,
storm intensity, size of cyclone, angle of approach, continental

shelf slope, all matter!

However, we can (and will!) model storm tides using extreme
value statistics.
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IMPACT OF SLR oN INUNDATION
PROBABILITIES

The shift in storm tide level needed for inundation with SLR
changes exceedance probabilities nonlinearly.

eeeeeeeee
Exceedance Without SLR
Exceedance With SLR

For the cartoon on the left:
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e Probability w/o SLR: 1%
e Probability w/SLR: 4%
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KEy QUESTION: ARE STORM SURGES
STATIONARY?

Common practice is to assume stationarity in future storm
surge levels.

However:

e SLR means more water to surge against the coast;

e Considerable uncertainty about impact of climate change on
tropical cyclone intensity.
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SoME EVIDENCE TrRoOPICAL CYCLONE
INTENSITY |Is INCREASING
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https://journals.ametsoc.org/view/journals/atsc/43/6/1520-0469_1986_043_0585_aasitf_2_0_co_2.xml
https://doi.org/10.1175/JCLI-D-15-0129.1

PoTENTIAL COVARIATES FOR STORM SURGE
INTENSITY CHANGES

Actually very difficult (as we will discuss later) to decide
between:

e Temperature (global mean temperature or sea-surface)
e Climate indices (NAO, ENSO)
o Sea level anomalies

e Stationary!
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DiFricuLT TO IDENTIFY CLIMATE CHANGE
INFLUENCE ON STORM SURGE

Source: Calafat et al (2022)
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https://www.nature.com/articles/s41586-022-04426-5

ExPoOSURE, VULNERABILITY, & RESPONSE
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IMPACTS FROM COASTAL FLOODING
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https://www.ipcc.ch/report/ar6/wg2/

LocaL DYNAMICS IMPACTING EXPOSURE AND
VULNERABILITY

Characterizing exposure and vulnerability i1s highly local and
reflective of many socioeconomic, infrastructure, and
topographical factors:

e drainage and permeability;
e location of critical infrastructure;
e housing stock & location;

e economic and social inequities.
29 / 42



LocaL DYNAMICS IMPACTING EXPOSURE AND
VULNERABILITY

As a result, 1t's hard to speak in general terms about potential
Impacts and their trends.

But:

e Migration and urbanization are key drivers;

e Coastal amenities seem to (presently) outweigh perceptions of
risk in population patterns and housing markets.
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HuMAN-SYSTEM RESPONSES

Responses are also hard to fully characterize, but some
relevant factors:

o Levee effect (back to White (1945));
e Transportation networks and evacuation;

e Increasing discussion of retreat from high-risk coastal cities.

31/42



SoME IMPORTANT CONSIDERATIONS

e Human-system dynamics are difficult to model well!
= Precriptive vs. Descriptive modeling
= Many theories of behavior

= How do you account for heterogeneity and distributional
outcomes?

e Uncertainties everywhere!

= Several different building inventory models (e.g. HAZUS):
these are often incomplete or rely on statistical
Interpolations.

= Choice of digital elevation model also can make a big 32 /42


https://doi.org/10.2112/JCOASTRES-D-13-00118.1

FLooD Risk MANAGEMENT
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CoasTAL FLooD Risk MANAGEMENT As A
DEecisioN PROBLEM

Some common objectives:

e Net costs/benefits;
e Reliability (minimizing flood probability)

e Expected loss of life.

These all raise additional questions about equity and ethics!
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MANY DIFFERENT CoAsTAL FLooD Risk
MANAGEMENT LEVERS

FLOOD WARNING

‘& EVACUATION

EXISTING
SEA LEVEL

RELOCATION,

ELEVATED
BUILDING

ACQUISITION

DRAINAGE

IMPROVEMENTS

LEVEE/
FLOODWALL ~ SHORELINE
| STABILIZATION

NNBF

- LIVING SHORELINES

- VEGETATED FEATURES

- OYSTER & CORAL REEFS
- MARITIME FORESTS BREAKWATERS

| NNBF ‘GROINS
AR BEACH & DUNE
RESTORATION
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https://www.usace.army.mil/Media/Images/igphoto/2001007580/

TIME PREFERENCE OF MONEY

Would you rather have $100 today or $1000 ten years from
now?
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TIME PREFERENCE OF MONEY

Would you rather have $100 today or $1000 ten years from
now?

Many economic reasons to value money/costs/benefits today
more than in the future:

e Inflation;
e Technological innovation;

e Compounding value of alternative investments.
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DiscouNT RATES

These preferences are captured with the discount rate. Let I be
the investment level,  the interest rate, then the return R(t) is

R(t)=I(1+7)t=1I=R() xd(¢t),
and where the discount factor d(t) is:

1
(1+7)°°

d(t) =

In this case, we interpret r as the discount rate. 37/ 42



IMPACT OF DiIscoOUNT RATES

The choice of discount rate plays a major role in any cost-
benefit analysis. Consider an initial investment of $1000:
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RELEVANT CONSIDERATIONS

So, to set up the decision problem, need to decide:

SLR model/included processes;

How to model storm surge (e.g. stationary or not);
How to treat changes in exposure/vulnerability;

If endogenous responses will be considered;

Key objective(s);

Levers which will be included,;

Discount rates for future costs and/or impacts.
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WHAT WiLL WE Focus ON?

Going forward, in this class we will focus more on uncertainty
quantification for the flood hazard:

e Calibrating SLR models and capturing uncertainties;

e Model selection and hypothesis testing for storm surge
stationarity.

The main reason for this is that these are the most universal
considerations given the local character and difficulties of the
human-system elements of risk. But many of the techniques we

discuss can be brought to bear on these components. 40 / 42



UrcoMING SCHEDULE
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UrcoOMING SCHEDULE

Wednesday: Discuss Van Dantzig (1956) and lab on sensitivity

analysis tfor the Van Dantzig coastal flood risk management
problem.

Next Monday: The bootstrap and sea-level rise models.
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