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What is "Uncertainty Quantification"?

Uncertainty quantification (UQ) is...

the full specification of likelihoods as well as distributional
forms necessary to infer the joint probabilistic response across
all modeled factors of interest...

— Cooke, Experts in Uncertainty: Opinion and Subjective Probability in
Science (1991)
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UQ vs. Uncertainty Characterization

By contrast, uncertainty characterization involves mapping
how alternative representations of the stressors and form and
function of modeled systems influence outcomes of interest.
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UQ vs. Uncertainty Characterization

By contrast, uncertainty characterization involves mapping
how alternative representations of the stressors and form and
function of modeled systems influence outcomes of interest.

In short:

UQ emphasizes probabilistic inference and projection,

UC explores impact of alternative hypotheses and
representations.
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UQ vs. Sensitivity Analysis

Sensitivity analysis involves analyzing how uncertainty in the
output is influenced by different sources of uncertainty in the
input(s).
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UQ vs. Sensitivity Analysis

Sensitivity analysis involves analyzing how uncertainty in the
output is influenced by different sources of uncertainty in the
input(s).

In short:

UQ looks at the probabilistic representation of input(s) and
output uncertainty;

SA looks at the impact of variability in input(s) on outputs (for a
number of purposes).
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When is UQ Appropriate?

Can specify a probability model to generate and/or draw
inferences about data;

Have sufficient data to constrain model adequately.

Often need a model which is computationally inexpensive.
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Model Calibration

A common UQ task is model calibration:

the selection of model parameters and structures to maximize
the fidelity of the system model to observational data given
model and computational constraints as calibration.

— Oreskes et al (1994)

We can calibrate statistical models or numerical simulation
models.
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Calibrating Simulation Models

Establishing some notation:

Let  be the simulation model:

 are the "control variables";

 are the "calibration variables".

F (x; θ)

x

θ
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Data-Model Discrepancy

The other important consideration is data-model discrepancy.

If  are the "observations,"" we can model these as:

where

 is the "true" system state at control variable ;

 are observation errors.

y

y = z(x) + ε,

z(x) x

ε
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Data-Model Discrepancy

Then the discrepancy  between the simulation and the
modeled system is:

ζ

ζ(x; θ) = z(x) − F (x; θ).
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Data-Model Discrepancy

Then the discrepancy  between the simulation and the
modeled system is:

This implies that the "observations" can be written as

ζ

ζ(x; θ) = z(x) − F (x; θ).

y = F (x; θ) + ζ(x; θ) + ε.
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Model Calibration and Discrepancy

Model calibration then involves specifying a probability model
for the data, which can include:

Distributions/likelihoods for the calibration parameters;

A probability model for the discrepancy and observation errors.
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What Happens If We Neglect

Discrepancy?

Neglecting discrepancy can result in biased inferences and, as
a result, projections, as we will see over the next few weeks.
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Review of Frequentist Statistics and

Sampling Distributions
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Frequentist vs. Bayesian UQ

Recall:

Frequentist statistics assumes that parameters of a given
probability model have a "fixed" value corresponding to those
statistics.
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Frequentist vs. Bayesian UQ

Recall:

Frequentist statistics assumes that parameters of a given
probability model have a "fixed" value corresponding to those
statistics.

Bayesian statistics assigns probabilities to parameters as part of
the probability model based on the degree of belief about their
consistency with the data (which is also random).
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Sampling Distributions

A central concept in frequentist statistics (and to a lesser
degree in Bayesian statistics) is the sampling distribution of a
statistic, which captures the uncertainty associated with
random samples.
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Sampling Distributions
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Frequentist UQ

Most frequentist UQ questions are centered around the
sampling distribution, as it captures uncertainty from variations
in the sample.
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Frequentist UQ

Most frequentist UQ questions are centered around the
sampling distribution, as it captures uncertainty from variations
in the sample.

But what if we only have access to one sample?

In laboratory settings, can run multiple experiments, but this is
not the case for the real world.
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"Classical" Approaches

Classical statistical approaches involve relying on asymptotics
or a special case distribution:

Assume an approximation to the sampling distribution and
analyitcally derive test statistics, confidence intervals, etc.
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What if we do not want to
make these assumptions?
Efron (1979) suggested
combining estimation with
simulation: the bootstrap.

The key idea: use the data
to define a data-generating
mechanism. Source: Wikipedia

The Bootstrap Principle
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Monte Carlo vs Bootstrapping

Monte Carlo: If we have a generative probability model,
simulate new samples from the model and estimate the
sampling distribution.

Bootstrap: assumes the existing data is representative of the
"true" population, and can simulate based on properties of the
data itself.
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Why Does The Bootstrap Work?

Efron's key insight: due to the Central Limit Theorem, the
differences between estimates drawn from the sampling
distribution and the true value converge to a normal
distribution.

Use the bootstrap to approximate the sampling distribution
through re-sampling and re-estimation.

Can draw asymptotic quantities (bias estimates, confidence
intervals, etc) from the differences between the sample estimate
and the bootstrap estimates.
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What Can We Do With The Bootstrap

Sampling Distribution?

Let  the "true" value of a statistic,  the estimate of the
statistic from the sample, and  the bootstrap estimates.

Estimate Variance: 

Bias Correction: 

Compute basic -confidence intervals:

t ​0 t̂

( ​)t
~
i

Var[ ] ≈t̂ Var[ ]t~

E[ ] −t̂ t ​ ≈0 E[ ] −t
~

t̂

α

− (Q ​(1 − α/2) − ), − (Q ​(α/2) − )(t̂ t
~ t̂ t̂ t

~ t̂ )
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The Non-Parametric Bootstrap
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The Non-Parametric Bootstrap

The non-parametric bootstrap is the most "naive" approach to
the bootstrap: resample-then-estimate.

25 / 49



Non-Parametric Bootstrap Scheme
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Simple Example: Is A Coin Fair?

Suppose we have observed twenty flips with a coin, and want
to know if it is weighted.

T, H, T, T, T, T, T, H, H, H, H, T, T, H, T, H, H, T, T, H

Based on this sample, the frequency of heads is 45%.
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If we generate 1000
samples:

The 95% basic confidence
interval is .

However, if we wanted to
use this sample to bias-
correct, we'd get an
estimated bias of about 0,
when the "true" bias is 

.

Simple Example: Is A Coin Fair?

(0.25, 0.65)

0.6 − 0.45 = 0.15
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Simple Example: Is A Coin Fair?

What if we redo this with fifty realizations?
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Simple Example: Is A Coin Fair?

This illustrates the centrality of the assumption that the sample
is representative of the population, given the lack of any
parametric structure.
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Bootstrapping with Structured Data

The naive non-parametric bootstrap that we just saw doesn't
work if data has structure, e.g. spatial or temporal dependence.
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Bootstrapping with Structured Data

For some structures (such as correlations), can transform the
data to an uncorrelated sample, then resample and re-
transform back.

For time series data, need to be more clever.
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Parametric Bootstrap
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The Parametric Bootstrap

The parametric bootstrap is more interesting (and powerful)
than the non-parametric bootstrap.

Non-Parametric Bootstrap: Resample directly from the data.

Parametric Bootstrap: Fit a model to the original data and
simulate new samples, then calculate bootstrap estimates.

This lets us use additional information, such as a simulation or
statistical model.
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Parametric Bootstrap Scheme
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Parametric Bootstrap For Time Series

A simple approach to using the parametric bootstrap for time-
series data:

1. Specify and fit a trend model.

2. Calculate the residuals from the trend.

3. Resample from the residuals to generate new time-series.

4. Refit trend model to capture uncertainty.
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Parametric Bootstrap For Time Series

A simple approach to using the parametric bootstrap for time-
series data:

1. Specify and fit a trend model.

2. Calculate the residuals from the trend.

3. Resample from the residuals to generate new time-series.

4. Refit trend model to capture uncertainty.

This approach can be used for model calibration to capture
uncertainty in parameter estimates.
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Parametric Bootstrap and SLR Data

Using the discrepancy notation, this is:

where:

 is the trend model (we'll use a quadratic);

 is the data-generating model for residuals.

We do not explicitly consider observation errors , as these are
part of the residual process.

y = F (x; θ) + ζ(x) + ​.ε

F

ζ

ε

37 / 49



Let's start by fitting a
quadratic function

to the data.

Parametric Bootstrap and SLR Data

a(t − t ​) +0 2 b(t − t ​) +0 c
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Analyzing Residuals

Now, let's analyze the residuals to see what probability model
might be appropriate.
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Parametric Bootstrap and SLR Data

We can then fit an autoregressive model to the residuals and
use that to generate new realizations.
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Parametric Bootstrap and SLR Data

Finally, we refit the trend model to each realization, which
yields sampling distributions for each parameter.
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Parametric Bootstrap and SLR Data

The 95% confidence intervals for each value:

Variable Sample Estimate Bootstrap 95% Confidence Interval
a 6 × 10−3 (0.2 × 10 , 1 ×−2 10 )−2

b −0.3 (−0.6, 0.7)

c −177 (−240, 45)

t ​0 1818 (1757, 2175)
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Parametric Bootstrap and SLR Data

We can also look for correlations across parameters with a
pairs or corner plot:
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Sources of Error for the Bootstrap

The bootstrap has three potential sources of error:

1. Sampling error: error from using finitely many replications

2. Statistical error: error in the bootstrap sampling distribution
approximation

3. Specification error (parametric): Error in the data-generating
model
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Key Takeaways

45 / 49



Key Takeaways: Calibration

Model calibration is an important UQ task.

Goal: identify model structures and parameters which are
consistent with the data and our prior beliefs (in a Bayesian
setting);

Important to capture the model discrepancy in an appropriate
fashion!
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Key Takeaways: The Bootstrap

The bootstrap is a powerful method to combine simulation and
estimation.

Several sources of error: of particular concern are statistical
error and specification error (but this is always a concern).

There are more sophisticated versions of the bootstrap for
different data structures, e.g. the (moving) block bootstrap for
time series data.

The parametric bootstrap provides a method for UQ through the
sampling distribution approximation.
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Upcoming Schedule
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Upcoming Schedule

Wednesday: Discuss Ezer & Corlett (2012) and lab on using the
bootstrap for sea-level data.

Next Monday: Introduction to Bayesian statistics and
computation.
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