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Bayesian Statistics and

Uncertainty Quantification
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Review of the Bootstrap
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Last Class: Frequentist Statistics and

Sampling Distributions

Frequentist UQ: Capture the sampling distribution of relevant
parameters.

This takes into account uncertainty in the data sample and
reflects the impact of inference.
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Review: The Parametric Bootstrap
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Review: The Parametric Bootstrap

Key assumptions:

Data is sufficiently representative of the population;

Model structure reasonably captures data-generating process
and/or residuals
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Sources of Bootstrap Error

The bootstrap has three potential sources of error:

1. Sampling error: error from using finitely many replications

2. Statistical error: error in the bootstrap sampling distribution
approximation

3. Specification error (parametric): Error in the data-generating
model
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But What If We Don't Care About

Frequency?

For what might be called the "lab science paradigm," frequency
properties are central to make inferences about relevant
scientific laws.

But for risk analysis, do we care about them?
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But What If We Don't Care About

Frequency?

For what might be called the "lab science paradigm," frequency
properties are central to make inferences about relevant
scientific laws.

But for risk analysis, do we care about them?

Perhaps not! A more relevant perspective: how much should
we believe in a given level of a future or present risk? This is
the perspective of Bayesian statistics.
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Introduction to Bayesian Statistics
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The Bayesian Perspective

From the Bayesian perspective, probability is interpreted as the
degree of belief in an outcome or proposition.
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The Bayesian Perspective

From the Bayesian perspective, probability is interpreted as the
degree of belief in an outcome or proposition.

There are two different two types of random quantities:

Observable quantities, or data (also random for frequentists);

Unobservable quantities, or parameters.

We can also speak of probabilities on model structures, rather
than framing model selection as hypothesis-testing.
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Conditional Probability Notation

Then it makes sense to discuss the probability of

model parameters 

unobserved data 

conditional on the observations , which we can denote:

θ

​y~

y

p(θ∣y) or p( ​∣y)y~
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Conditioning on Observations

This fundamental conditioning on observations  is a
distinguishing feature of Bayesian inference.

Compare: frequentist approaches are based on re-estimated
over the distribution of possible  conditional on the "true"
parameter value.

y

y
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Bayesian Updating

Bayesian probabilities are conditional on observations.

This means that as make new observations, we can update
them.

We do this using Bayes' Rule.
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Bayes' Rule

Original version (Bayes (1763), An Essay towards solving a
Problem in the Doctrine of Chances):

P (A∣B) = ​ if P (B) =
P (B)

P (B∣A) × P (A)
 0.
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Bayes' Rule

Original version (Bayes (1763), An Essay towards solving a
Problem in the Doctrine of Chances):

Standard but important result in conditional probability

As previously seen (hopefully remembered!) in Intro Stats

Monty Hall Problem

P (A∣B) = ​ if P (B) =
P (B)

P (B∣A) × P (A)
 0.
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Source: Unsure! Got it from Facebook, also seen
on r/PhilosophyMemes

Bayes' Rule
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Bayes' Rule

Original version (Bayes (1763), An Essay towards solving a
Problem in the Doctrine of Chances):

Bayes used this to estimate the distribution of a probability  of
a binomial outcome (think success/failure).

Richard Price (actual writer of quite a bit of Bayes (1763); see
Stigler (2018)) "rebutted" Hume by "demonstrating" we ought to
believe the sun will continue to rise.

P (A∣B) = ​ if P (B) =
P (B)

P (B∣A) × P (A)
 0.

p
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Bayes' Rule

"Modern" version (Laplace (1774), Mémoire sur la probabilité
des causes par les événements):

p(θ∣y) = ​p(θ)
p(y)
p(y∣θ)
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Bayes' Rule

"Modern" version (Laplace (1774), Mémoire sur la probabilité
des causes par les événements):

​ =

posterior

​p(θ∣y)
​ ​

​

normalization

​p(y)
​​p(y∣θ)

likelihood

​p(θ)

prior
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On The Normalizing Constant

The normalizing constant (also called the marginal likelihood)
is the integral

Since this generally doesn't depend on , it can often be
ignored, as the relative probabilities don't change.

p(y) = ​ p(y∣θ)p(θ)dθ.∫
Θ

θ
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On The Normalizing Constant

The normalizing constant (also called the marginal likelihood)
is the integral

Since this generally doesn't depend on , it can often be
ignored, as the relative probabilities don't change.

One big exception: model selection (will discuss later...)

p(y) = ​ p(y∣θ)p(θ)dθ.∫
Θ

θ
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Bayes' Rule (Ignoring Normalizing

Constants)

The version of Bayes' rule which matters the most for 95%
(approximate) of Bayesian statistics:

"The posterior is the prior times the likelihood..."

p(θ∣y) ∝ p(y∣θ) × p(θ)
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Bayesian Model Components

This means that a Bayesian model specification requires two
key components:

1. Probability model for the data given the parameters (the
likelihood), t

2. Prior distributions over the parameters, 

Can be independent or joint

p(y∣θ)

p(θ)
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Bayesian Model Components

This means that a Bayesian model specification requires two
key components:

1. Probability model for the data given the parameters (the
likelihood), t

2. Prior distributions over the parameters, 

Can be independent or joint

Bayesian updating: Using the likelihood to "update" the prior
probabilities of the parameters.

p(y∣θ)

p(θ)
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A Coin Flipping Example

We would like to understand if a coin-flipping game is fair.
We've observed the following sequence of flips:

H, H, H, T, H, H, H, H, H
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A Coin Flipping Example

We would like to understand if a coin-flipping game is fair.
We've observed the following sequence of flips:

H, H, H, T, H, H, H, H, H

8/9 are heads, which might seem suspicious, but randomness
can result in outliers like this.
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Coin Flipping Likelihood

The data-generating process here is straightforward: we can
represent a coin flip with a heads-probability of  as a sample
from a Binomial distribution,

θ

y ∼ Binomial(θ).
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Coin Flipping Probability Mass

Let's compare what the probability mass functions of these
distributions look like for  and .θ = 0.5 θ = 0.9
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The PMF told us what the
probability of a given dataset
was given a fixed parameter .
But we can view this same
function from a different
perspective: given the number
of successes, how likely is a
given parameter?

Likelihood Function

θ
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Prior Distribution

For frequentist approaches, we could stop there and maximize
the likelihood, and we'd get a maximum likelihood estimate of 

.

But suppose that we spoke to a friend who knows something
about coins, and she tells us that it is extremely difficult to
make a passable weighted coin which comes up heads more
than 75% of the time. Since we have a relatively small amount
of data, this seems like valuable information to include, and we
can do this through our prior.

θ ≈ 0.88
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Since  is bounded between 0
and 1, we'll settle on a Beta
distribution for our prior,
specifically , which
covers a reasonable spread of
possibilities while maintaining
symmetry.

Prior Distribution

θ

Beta(4, 4)

27 / 52



Posterior Distribution

Combining using Bayes' rule gives us a maximum a posteriori
(MAP) estimate of .θ ≈ 0.74
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Bayesian Updating As An Information

Filter

The posterior is a "compromise" between the prior and the data.

The posterior mean is a weighted combination of the data and
the prior mean

The weights depend on the prior and the likelihood variances

More data makes the posterior more confident (lower variance)
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Representing Uncertainty

As with frequentist approaches, can reflect posterior inferences
through a point estimate (mean, median, or some other Bayes
estimator).

But more often, we want to capture the degree of uncertainty
associated with a particular value.
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Credible Intervals

Bayesian credible intervals are straightforward to interpret: 
is in  with probability .

In other words, choose  such that

This is not usually a unique choice, but the "equal-tailed
interval" between the  and  quantiles is a
common choice.

θ

I α

I

p(θ ∈ I ∣y) = α.

(1 − α)/2 (1 + α)/2
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In the case of our coin
flipping example, how
much uncertainty is there?
Let's say we want to
capture the 95% credible
interval, which is 

.

Credible Intervals: Coin Flipping

Example

(0.48, 0.89)
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Credible Intervals: Coin Flipping

Example

But that was for a simple example where it was easy to
compute the posterior for a large number of values.

The easiest way to do this in general is through Monte Carlo:
draw a lot of samples from the posterior and compute the
empirical quantiles. We'll discuss later today/next week.
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More Complex Models

One advantage of the Bayesian framework is it can be extended
to more complex problems:

Models with heteroskedastic residual structures:

​ ​

y(t)

R(ϕ, t)

= f (θ, t) + R(ϕ, t)

= ζ(ϕ, t) + ε ​t
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More Complex Models

One advantage of the Bayesian framework is it can be extended
to more complex problems:

Hierarchical models:

y ​∣θ ​, ϕj j

θ ​∣ϕj

ϕ

∼ P (y ​∣θ ​, ϕ)j j

∼ P (θ ​∣ϕ)j

∼ P (ϕ)
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Generative Modeling

Bayesian models can also be used to generate new data 
through the posterior predictive distribution:

This allows us to test the model through simulation (e.g.
hindcasting) and generate probabilistic predictions.

​y~

p( ​∣y) =y~ ​ p( ​∣θ)p(θ∣y)dθ∫
Θ

y~
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Role of the Prior

There are two views on how to select prior distributions:

1. Priors as capturing by constraints/prior knowledge;
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Role of the Prior

There are two views on how to select prior distributions:

1. Priors as capturing by constraints/prior knowledge;

2. Priors as part of the data-generating process.

37 / 52



On Uniform Priors

What about uniform priors?

Unbounded uniform priors: often chosen to reflect ignorance,
but nonsensical for data-generation;

Bounded uniform priors: sudden transition from positive to zero
probability is rarely justified.
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Considerations When Selecting Priors

Informativeness: How much information does the prior encode?

Structure: Does the prior encode modeling features (e.g.
symmetry)?

Regularization: Does the prior yield more "stable" inferences
(e.g. penalizing extreme parameter values)?

Also: what values are assigned zero prior probability? These
values are ruled out from the posterior.
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Bayesian Computation: A Preview
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Goals of Bayesian Computation

1. Sampling from the posterior distribution

2. Sampling from the posterior predictive distribution

by generating data.

p(θ∣y)

p( ​∣y)y~
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Bayesian Computation and Monte

Carlo

In other words, Bayesian computation involves Monte Carlo
simulation from the posterior (predictive) distribution.

These samples can then be analyzed to identify estimators,
credible intervals, etc.
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Sampling from the Posterior

Trivial for extremely simple problems: low-dimensional and
with "conjugate" priors (which make the posterior a closed-
form distribution).

What to do when problems are more complex and/or we don't
want to rely on priors for computational convenience?
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Idea:

1. Generate proposed
samples from another
distribution  which
covers the target ;

2. Accept those proposals
based on the ratio of the
two distributions.

A First Algorithm: Rejection Sampling

g(θ)
p(θ∣y)
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Rejection Sampling Algorithm

Suppose  for some .

1. Simulate .

2. Simulate a proposal .

3. If

accept . Otherwise reject.

p(θ∣y) ≤ Mg(θ) 1 < M < ∞

u ∼ Unif(0, 1)

∼θ̂ g(θ)

u < ​ ,
Mg( )θ̂

p( ∣y)θ̂

θ̂
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We want to keep more
samples from the areas
where  and
reject where  is heavier (in
this case, the tails).

Rejection Sampling Intuition

g(θ) < p(θ∣y)
g
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In the bulk:  is
closer to , so the
acceptance ratio is higher.

In the tails:

so the acceptance ratio is
much lower.

Rejection Sampling Intuition

Mg(θ)
p(θ∣y)

Mg(θ) ≫ p(θ∣y),
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Rejection Sampling Considerations

1. Probability of accepting a sample is , so the "tighter" the
proposal distribution coverage the more efficient the sampler.

2. Need to be able to compute .

Finding a good proposal and computing  may not be easy for
complex posteriors!

How can we do better?

1/M

M

M
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Key Takeaways
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Key Takeaways: Bayesian Statistics

Probability as degree of belief

Emphasis on explicit conditioning on the data

Bayes' Rule as the fundamental theorem of conditional
probability

Bayesian updating as an information filter

Prior selection important: lots to consider!

Rejection sampling as a first Monte Carlo algorithm for sampling
from "arbitrary" distributions.
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Upcoming Schedule
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Upcoming Schedule

Next Monday: Markov chains and Markov chain Monte Carlo
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