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Bayesian Computation and

Markov Chains
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Review of the Bayesian Statistics
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Last Class: Bayes' Theorem and

Bayesian Statistics

p(θ|y)

posterior

=

likelihood

p(y|θ)

p(y)

normalization

prior

p(θ)

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Key Takeaways

No distinction between parameters and unobserved data in
Bayesian framework;

Key emphasis on conditioning on data;

Likelihood is given by the probability model for the data-
generating process;

Posterior as "compromise" between prior and likelihood;

Prior can be influential in posterior inferences.

5 / 44



Bayesian Computation
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Goals of Bayesian Computation

1. Sampling from the posterior distribution

2. Sampling from the posterior predictive distribution

by generating data.

p(θ|y)

p(~y|y)
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Bayesian Computation and Monte

Carlo

In other words, Bayesian computation involves Monte Carlo
simulation from the posterior (predictive) distribution.

These samples can then be analyzed to identify estimators,
credible intervals, etc.
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Sampling from the Posterior

Trivial for extremely simple problems: low-dimensional and
with "conjugate" priors (which make the posterior a closed-
form distribution).

What to do when problems are more complex and/or we don't
want to rely on priors for computational convenience?
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Idea:

1. Generate proposed
samples from another
distribution  which
covers the target ;

2. Accept those proposals
based on the ratio of the
two distributions.

A First Algorithm: Rejection Sampling

g(θ)
p(θ|y)
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Rejection Sampling Algorithm

Suppose  for some .

1. Simulate .

2. Simulate a proposal .

3. If

accept . Otherwise reject.

p(θ|y) ≤ Mg(θ) 1 < M < ∞

u ∼ Unif(0, 1)

θ̂ ∼ g(θ)

u <
p(θ̂|y)

Mg(θ̂)
,

θ̂
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We want to keep more
samples from the areas
where  and
reject where  is heavier (in
this case, the tails).

Rejection Sampling Intuition

g(θ) < p(θ|y)
g
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In the bulk:  is closer
to , so the
acceptance ratio is higher.

In the tails:

so the acceptance ratio is
much lower.

Rejection Sampling Intuition

Mg(θ)
p(θ|y)

Mg(θ) ≫ p(θ|y),
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Rejection Sampling Considerations

1. Probability of accepting a sample is , so the "tighter" the
proposal distribution coverage the more efficient the sampler.

2. Need to be able to compute .

Finding a good proposal and computing  may not be easy (or
possible) for complex posteriors!

How can we do better?

1/M

M

M
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Idea of Better Approach

The fundamental problem with rejection sampling is that we
don't know the properties of the posterior. So we don't know
that we have the appropriate coverage. But...

What if we could construct an proposal/acceptance/rejection
scheme that necessarily converged to the target distribution,
even without a priori knowledge of its properties?

Idea: Develop a stochastic process based on Markov chains.
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Markov Chains
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Consider a stochastic
process , where

 is the state at
time , and

 is a time-index set (can
be discrete or
continuous)

.

What is a Markov Chain?

{Xt}t∈T

Xt ∈ S

t

T

P(si → sj) = pij
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What is a Markov Chain?

This stochastic process is a Markov chain if it satisfies the
Markovian (or memoryless) property:

In other words: the probability of being in any given state  at
time  only depends on the prior state , not the
previous history.

P(XT+1 = si|X1 = x1, … , XT = xT ) = P(XT+1 = si|XT = xT )

xi

T + 1 XT
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Example: "Drunkard's Walk"

Consider a process where we can "stumble" to the left or right
with equal probability.

The unconditional probability  can be modeled by a
sum of coin flips from the initial state , but the conditional
probability  only depends on the
current node, not how we got there.

P(XT = si)
X0

P(XT = si|XT−1 = xT−1)
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Weather Example

Let's look at a more interesting example. Suppose the weather
can be foggy, sunny, or rainy.

Based on past experience, we know that:

1. There are never two sunny days in a row;

2. Even chance of two foggy or two rainy days in a row;

3. A sunny day occurs 1/4 of the time after a foggy or rainy day.
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Aside: Higher-Order Markov Chains

Suppose that today's weather depends on the prior two days.

1. Can we write this as a Markov chain?
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Aside: Higher-Order Markov Chains

Suppose that today's weather depends on the prior two days.

1. Can we write this as a Markov chain?

2. What are the states?
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Weather Example: Transition Matrix

We can summarize these probabilities in a transition matrix :

Rows are the current state, columns are the next step, so 
.

P

P =

F S R

⎛⎜⎝1/2 1/4 1/4

1/2 0 1/2

1/4 1/4 1/2

⎞⎟⎠ F

S

R

∑i pij = 1
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Weather Example: State Probabilities

Denote by  a probability distribution over the states at time .

Then :

λ
t

t

λ
t = λ

t−1
P

( ) = ( )λ
t

F
λ

t

S
λ

t

R
λ

t−1
F

λ
t−1
S

λ
t−1
R

⎛⎜⎝1/2 1/4 1/4

1/2 0 1/2

1/4 1/4 1/2
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Multi-Transition Probabilities

Notice that

so multiple transition probabilities are -exponentials.

λ
t+i = λ

t
P

i,

P

P
3 =

F S R

⎛⎜⎝26/64 13/64 25/64

26/64 12/64 26/64

26/64 13/64 26/64

⎞⎟⎠ F

S

R
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Long-Run Probabilities

What happens if we let the system run for a while starting from
an initial sunny day?
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Notice that the
probabilities eventually
stabilize.

Long-Run Probabilities

What happens if we let the system run for a while starting from
an initial sunny day?
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Stationary Distributions

This stabilization always occurs when the probability
distribution is an eigenvector of  with eigenvalue 1:

This is called an invariant or a stationary distribution.

P

π = πP .
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Stationary Distributions

Does every Markov chain have a stationary distribution?

Not necessarily! The key is two properties:

Irreducible

Aperiodicity
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Irreducibility

A Markov chain is irreducible if every state is accessible from
every other state, e.g. for every pair of states  and  there is
some  such that 

Here is an example of a reducible Markov chain:

si sj

k > 0 P k
ij > 0.
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A Markov chain is aperiodic
if all states have period 1.

Aperiodicity

The period of a state  is the greatest common divisor  of all 
such that . In other words, if a state  has period , all
returns must occur after time steps which are multiples of .

si k t

P
t

ii
> 0 si k

k
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Ergodic Markov Chains

A Markov chain is ergodic if it is aperiodic and irreducible.

Ergodic Markov chains have a limiting distribution which is the
limit of the time-evolution of the chain dynamics, e.g.

Key: this limit is independent of the initial state probability.

Intuition: Ergodicity means we can exchange thinking about
time-averages and ensemble-averages.

πj = lim
t→∞

P(Xt = sj).
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Limiting Distributions Are Stationary

For an ergodic chain, the limiting distribution is the unique
stationary distribution (we won't prove uniqueness):

πj = lim
t→∞

P(Xt = sj|X0 = si)

= lim
t→∞

(P t+1)ij = lim
t→∞

(P tP)ij

= lim
t→∞

∑
d

(P n)idPdj

= ∑
d

πdPdj
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The portion of the chain
prior to convergence to the
stationary distribution is
called the transient
portion.

This will be important next
week!

Transient Portion of the Chain
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Detailed Balance

The last important concept is detailed balance.

Let  be a Markov chain and let  be a probability
distribution over the states. Then the chain is in detailed
balance with respect to  if

{Xt} π

π

πiPij = πjPji.
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Detailed Balance

The last important concept is detailed balance.

Let  be a Markov chain and let  be a probability
distribution over the states. Then the chain is in detailed
balance with respect to  if

Detailed balance implies reversibility: the chain's dynamics
are the same when viewed forwards or backwards in time.

{Xt} π

π

πiPij = πjPji.
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Detailed Balance and Stationary

Distributions

Detailed balance is a sufficient but not necessary condition for
the existence of a stationary distribution (namely ):π

(πP)i =∑
j

πjPji

=∑
j

πiPij

= πi∑
j

Pij = πi
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Intuition About Detailed Balance

What does detailed balance mean? Let's compare with the
definition of a stationary distribution.

The existence of a stationary distribution is a global condition:
the sum of all probability out of any given node has to equal the
total incoming probability.
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Intuition About Detailed Balance

What does detailed balance mean? Let's compare with the
definition of a stationary distribution.

The existence of a stationary distribution is a global condition:
the sum of all probability out of any given node has to equal the
total incoming probability.

Detailed balance is a stronger local condition: not just that the
total probability in and out of all nodes, but that the flow of
probability must be balanced across every transition.
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Consider NYC and its
surroundings: each
borough/region can be
thought of as a node, and
population transitions
occur across
bridges/tunnels.

Detailed Balance Analogy

A nice analogy (from Miranda Holmes-Cerfon) is traffic flow.
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The stationary criterion
means that the number of
cars per unit time leaving
each borough is the same
as those entering,
regardless of how they
move.

Detailed Balance Analogy
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Detailed balance means
traffic must be balanced
across each bridge or
tunnel per unit time.

Detailed Balance Analogy
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Idea of Sampling Algorithm

The idea of our sampling algorithm (which we will discuss next
time) is to construct an ergodic Markov chain from the detailed
balance equation for the target distribution.

Detailed balance implies that the target distribution is the
stationary distribution.

Ergodicity implies that this distribution is unique and can be
obtained as the limiting distribution of the chain's dynamics.
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Idea of Sampling Algorithm

In other words:

Generate an appropriate Markov chain,

Run its dynamics long enough to converge to the stationary
distribution,

Use the resulting ensemble of states as a Monte Carlo sample.
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Key Takeaways
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Key Takeaways: Markov Chains

Markov chains are a very useful class of stochastic processes.

If a chain is ergodic, a stationary distribution exists.

The stationary distribution is the limit of the time-evolution of
the ensemble of states.

Can split Markov chain dynamics into "transient" and stationary
portion.

Our goal: construct a Markov chain whose stationary distribution
is the posterior of our model (this is Markov chain Monte Carlo).

Today's notation focused on chains on discrete state spaces, but
everything maps directly to continuous spaces. 42 / 44



Upcoming Schedule
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Upcoming Schedule

Wednesday: Discussion of Oppenheimer et al (2008)

Next Monday: Markov chain Monte Carlo

44 / 44


