
BEE 6940 Lecture 8 March 13, 2023

Markov Chain Monte Carlo

1 / 35

Table of Contents

1. Review of Markov Chain Concepts

2. Metropolis-Hastings Algorithm

3. Considerations for Implementation

4. Assessing Convergence

5. Key Takeaways

6. Upcoming Schedule

2 / 35

Review of Markov Chains

3 / 35

Markov Chains

A Markov chain is a stochastic process based on memoryless
probabilistic transitions between states.

Key properties:

Detailed Balance (reversibility) ⇒ Existence of stationary
distribution

Ergodicity (irreducible and aperiodic) ⇒ Stationary distribution is
unique and can be obtained as a limiting distribution.

4 / 35

Idea of Sampling Algorithm

If we construct an ergodic Markov chain with the appropriate
transition probabilities for detailed balance to hold with
respect to the target distribution, we can use the chain
realizations as samples from the target distribution.

No need for closed-form representation of the posterior

Can use these samples as normal (with some caveats) for
means, quantiles, simulations, etc.

This category of sampling algorithms is called Markov chain
Monte Carlo (MCMC).

5 / 35

Convergence to the Target Distribution

Given a Markov chain returned from this
procedure, sampling from distribution :

 as

This means the chain can be considered a dependent sample
approximately distributed from .

The first values (the transient portion) of the chain are highly
dependent on the initial value.

{Xt}t=1,…,T

π

P(Xt = y) → π(y) t → ∞

π

6 / 35

The Metropolis-Hastings Algorithm

7 / 35

Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is the foundational MCMC
algorithm (and was named one of the top ten algorithms of the
20th century).

It builds a Markov chain based on transitions by
accepting/rejecting proposals for new samples from a
conditional proposal distribution and accepting or
rejecting those proposals.

q(y|x)

8 / 35

https://www.computer.org/csdl/magazine/cs/2000/01/c1022/13rRUxBJhBm

Metropolis-Hastings Algorithm

Given :

1. Generate ;

2. Set with probability ,
where

else set .

Xt = xt

Yt ∼ q(y|xt)

Xt+1 = Yt ρ(xt, Yt)

ρ(x, y) = min{
π(y)

π(x)

q(x|y)

q(y|x)
, 1},

Xt+1 = xt

9 / 35

Metropolis-Hastings Algorithm

That almost seems too simple!

But the devil is in the details: performance and efficiency are
highly dependent on the choice of .q

10 / 35

Metropolis-Hastings Algorithm

That almost seems too simple!

But the devil is in the details: performance and efficiency are
highly dependent on the choice of .

Key: There is a tradeoff between exploration and acceptance.

Wide proposal: Can make bigger jumps, may be more likely to
reject proposals.

Narrow proposal: More likely to accept proposals, may not "mix"
efficiently.

q

10 / 35

M-H and Detailed Balance

Why do M-H transitions satisfy detailed balance?

Write detailed balance equation as:

where is the stationary distribution and is the
transition kernel (not necessarily normalized) of moving from

.

π(x)k(x, y) = π(y)k(y, x),

π(⋅) k(x, y)

x → y

11 / 35

M-H and Detailed Balance

The transition kernel for M-H transitions can be written as:

where is the proposal distribution and is the M-H
acceptance probability.

k(x, y) = q(y|x)ρ(x, y),

q ρ

12 / 35

M-H and Detailed Balance

If the proposal is rejected, e.g. , then detailed balance is
satisfied trivially.

Else, the left-hand side of the detailed balance equation
becomes:

.

x = y

π(x)k(x, y) = π(x)q(y|x)ρ(x, y).

13 / 35

M-H and Detailed Balance

Without loss of generality, suppose
so . Then

since .

π(y)q(x|y) < π(x)q(y|x),
ρ(x, y) < 1

π(y)k(x, y) = π(x)q(y|x) ×
π(y)

π(x)

q(x|y)

q(y|x)

= π(y)q(x|y)

= π(y)k(y, x)

ρ(y, x) = 1

14 / 35

Considerations for Implementation

15 / 35

Proposal Distributions

The original Metropolis et al (1953) algorithm focused on
symmetric distributions (), which are a
convenient choice as then the acceptance probability reduces
to

q(y|x) = q(x|y)

ρ = min{
π(y)

π(x)
, 1}.

16 / 35

Proposal Distributions

For example, a common choice is a normal density
 centered around the current point.

This turns the "exploration" part of the M-H algorithm into a
random walk.

y ∼ Normal(xt, σ2)

17 / 35

Proposal Distributions: Example

18 / 35

Proposal Distributions: Example

19 / 35

Sampling Efficiency

Two common measures of sampling efficiency:

Acceptance Rate: Rate at which proposals are accepted

"Optimally" 30-45% (depending on number of parameters)

Effective Sample Size (ESS): Accounts for autocorrelation
 across samplesρt

Neff =
N

1 + 2∑∞

t=1 ρt

20 / 35

Sampling Efficiency Example

21 / 35

Autocorrelation Of Chains

22 / 35

ESS By Proposal Variance

23 / 35

Assessing Convergence

24 / 35

Convergence to Stationary

Distribution

Since the samples are a Markov chain, there is a transient
portion prior to convergence to the stationary distribution.

What to do about these samples?

25 / 35

Convergence to Stationary

Distribution

Since the samples are a Markov chain, there is a transient
portion prior to convergence to the stationary distribution.

What to do about these samples?

Discard as burn-in;

Just run the chain longer.

25 / 35

How to Identify Convergence?

This is probably the most challenging part of MCMC, other than
tuning the proposal distribution.

Short answer: There is no guarantee! Judgement based on an
accumulation of evidence from various heuristics.

The good news — getting the precise "right" end of the
transient chain doesn't matter. If a few transient iterations of
the transient portion, the effect will be washed out with a large
enough post-convergence chain.

26 / 35

Heuristics for Convergence

Compare distribution (histogram/kernel density plot) after half of
the chain to full chain.

27 / 35

Heuristics for Convergence

Gelman-Rubin criterion (Gelman & Rubin (1992)):

Run multiple chains from "overdispersed" starting points

Compare intra-chain and inter-chain variances

Summarized as statistic: closer to 1 implies better
convergence.

Can also check distributions across multiple chains vs. the
half-chain check. This is the default in Turing.jl with
multiple chains (will see in lab).

R̂

28 / 35

https://doi.org/10.1214/ss/1177011136

Aside: Multiple Chains

Unless a specific scheme is used, multiple chains are not a
solution for issues of convergence, as each individual chain
needs to converge and have burn-in discarded/watered-down.

This means multiple chains are more useful for diagnostics, but
once they've all been run long enough, can mix samples freely.

29 / 35

Heuristics for Convergence

If you're more interested in the mean estimate, can also
look at the its stability by iteration or the Monte Carlo
standard error.

Look at traceplots; do you see sudden "jumps"?

When in doubt, run the chain longer.

30 / 35

Approaches for Increasing Efficiency

Adaptive M-H (e.g. Vihola (2012)): adjusts proposal density to hit
target acceptance rate

Need to be cautious about detailed balance

Typical strategy is to adapt for a portion of the initial chain
(part of the burn-in), then run longer with that proposal.

31 / 35

https://doi.org/10.1007/s11222-011-9269-5

Approaches for Increasing Efficiency

Hamiltonian Monte Carlo

Idea: Use proposals which steer towards "typical set"
without collapsing towards the mode (based on Hamiltonian
vector field);

Requires gradient information: can be obtained through
autodifferentiation; challenging for external, black-box
models;

Can be very efficient due to potential for anti-correlated
samples, but efficiency is also be sensitive to
parameterization.

32 / 35

Key Takeaways: MCMC

Construct ergodic and reversible Markov chains with posterior as
stationary distribution.

Metropolis-Hastings: conceptually simple algorithm, but
implementation plays a major role.

Must rely on "accumulation of evidence" from heuristics for
determination about convergence to stationary distribution.

Transient portion of chain: Meh. Some people worry about this
too much. Discard or run the chain longer.

Parallelizing solves few problems, but running multiple chains
can be useful for diagnostics.

33 / 35

Upcoming Schedule

34 / 35

Upcoming Schedule

Wednesday: Lab on using Turing.jl for probabilistic
programming and MCMC

Next Monday: Storm surge and modeling extreme values

35 / 35

