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REVIEW OF COASTAL FLOOD HAZARDS

3 / 48



Tide gauge data comes in
many "flavors", based on
local tidal and diurnal
cycles.

Mean Highest High Water
(MHHW) is the typical
"extreme" sea level datum. Source: Inside the Eye Blog, National

Hurricane Center, 01-29-2016

HOW ARE LOCAL HIGH WATER LEVELS

MEASURED?
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https://noaanhc.files.wordpress.com/2016/02/tide_plot.jpg


CONTRIBUTORS TO EXTREME SEA LEVELS

Source: NOAA 2022 Sea Level Rise Technical Report 5 / 48

https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report-sections.html


STORM TIDES
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Storm surge is the rise in
water level due solely to
the winds from a storm.

Storm tides are the total
water level during a storm,
including tides and the
storm surge.

Source: NOAA Ocean Service

STORM TIDES VS. STORM SURGE

7 / 48

https://oceanservice.noaa.gov/facts/stormsurge-stormtide.html


The specifics of a storm
surge event will depend on:

Wind speed and angle
(relative to shore)

Coastal terrain

Storm track and pressure
Source: NOAA National Hurricane Center

CONTRIBUTORS TO STORM SURGE
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https://www.nhc.noaa.gov/surge/


RISK ANALYSIS AND STORM TIDES

This complexity means modeling storm surges often requires
spatially-explicit physical models (or spatial emulators: more
on this later).

But often (and particularly for risk analysis), we care about the
distribution of storm tide levels and the potential to overwhelm
flood mitigation infrastructure.
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STATISTICAL MODELING OF STORM TIDES

As a result, we want to use statistical models to understand
how probable flood events might be.

But, unlike the statistical applications we've seen so far, we
aren't as interested in the "typical" or average occurrence, we
care about the extremes.
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EXTREME VALUE STATISTICS
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WHAT DO WE MEAN BY EXTREME VALUES?

Extreme values are those which occur far from the center of a
probability distribution, and so are not well-represented by
measures of central tendency.

Extreme values are of critical importance for risk analysis.
Relatively small changes in underlying distributions can result
in substantially-large changes in extremes.

12 / 48



EXAMPLE OF EXTREME VALUE CHANGES
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TWO COMMON QUESTIONS ABOUT

EXTREMES

1. What is the distribution of "block" extremes, e.g. annual
maxima?
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EXAMPLE: MONTHLY TIDE GAUGE MAXIMA

16 / 48



EXAMPLE: MONTHLY TIDE GAUGE MAXIMA
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BLOCK EXTREMES (MAXIMA)

A different way of framing this question:

Given independent and identically-distributed random
variables , what can we say about the
distribution of maxima of "blocks" of size :

for ?

X1, X2, … , Xmk

m

~
Xi = max

(i−1)m<j≤im
Xj,

i = 1, 2, … , k
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ANALOGY: CENTRAL LIMIT THEOREM

Recall that the Central Limit Theorem tells us:

If we have independent and identically-distributed variables 
 from some population with mean  and standard

deviation , the sample mean  has the approximate
distribution

X1, X2, … μ

σ X̄

X̄ ∼ Normal(μ, σ/√n).
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EXTREME VALUE THEOREM

The Extreme Value Theorem (the stats one, not calculus!) is
the equivalent for block maxima.

If the limiting distribution exists, it can only by given as a
Generalized Extreme Value (GEV) distribution:

defined for  such that .

H(y) = exp{−[1 + ξ(
y − μ

σ
)]

−1/ξ

},

y 1 + ξ(y − μ)/σ > 0
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GENERALIZED EXTREME VALUE

DISTRIBUTIONS

GEV distributions have three parameters:

location ;

scale ;

shape .

μ

σ > 0

ξ
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The shape parameter  is
particularly influential, as
the GEV distribution can
take on three shapes
depending on its sign.

GENERALIZED EXTREME VALUE

DISTRIBUTIONS

ξ
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: Frechet (heavy-
tailed)

: Gumbel (light-
tailed)

: Weibull (bounded)

GEV TYPES

ξ > 0

ξ = 0

ξ < 0
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GEV TYPES

 implies the extremes are bounded (the Weibull
distribution comes up in the context of temperature and
wind speed extremes).

 implies that the tails are heavy, and there is no
expectation. Common for streamflow, storm surge,
precipitation.

The Gumbel distribution ( ) is common for extremes
from normal distributions, doesn't occur often in real-world
data.

ξ < 0

ξ > 0

ξ = 0
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For example, for our tide
gauge data, the maximum-
likelihood estimate is:

;

;

. Model
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GEV FIT: TIDE GAUGE DATA

μ = 0.45

σ = 0.13

ξ = 0.21
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If , risk projections
are extremely sensitive to
its value, as larger values
will yield disproportionately
larger tail samples.

Source: Zarekarizi et al (2020)

BE CAREFUL ABOUT THE SHAPE PARAMETER!

ξ > 0
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https://doi.org/10.1038/s41467-020-19188-9


RETURN PERIODS

The return period of an extreme value is the inverse of the
exceedance probability, e.g. a value with an annual exceedance
probability of 1% (0.99 quantile) has a 100-year return period
("100-year storm").
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RETURN PERIODS

The return period of an extreme value is the inverse of the
exceedance probability, e.g. a value with an annual exceedance
probability of 1% (0.99 quantile) has a 100-year return period
("100-year storm").

A major challenge with return periods is that we often don't
have enough data to constrain these values, but we can use
fitted GEV distributions to estimate the -year return period by
computing the  quantile.

m

1 − 1/m
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PEAKS OVER THRESHOLDS
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TWO COMMON QUESTIONS ABOUT

EXTREMES

1. What is the distribution of "block" extremes, e.g. annual
maxima?

2. What is the distribution of extremes which exceed a certain
value?
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DRAWBACKS OF BLOCK MAXIMA

The block-maxima approach has two potential drawbacks:

1. Uses a limited amount of data;

2. Doesn't capture the potential for multiple exceedances within a
block.
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EXAMPLE: MONTHLY TIDE GAUGE MAXIMA
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PEAKS OVER THRESHOLDS

An alternative approach is to model the distribution of events
where a random variable  exceeds a sufficiently high
threshold .

Consider the conditional excess distribution function

which is the cumulative distribution of values by which 
exceeds  (given that the exceedance has occurred).

X1, X2, …
u

Fu(y) = P(X > u + y|X > u),

X

u
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PEAKS OVER THRESHOLDS EXAMPLE
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PEAKS OVER THRESHOLDS

It turns out that, for a large number of underlying distributions
of  (including most of the typical ones, such as normal and
log-normal),  is well-approximated by a Generalized
Pareto Distribution (GPD):

defined for  such that .

X
Fu(y)

Fu(y) → G(y) = 1 − [1 + ξ(
y − μ

σ
)

−1/ξ

],

y 1 + ξ(y − μ)/σ > 0
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GENERALIZED PARETO DISTRIBUTIONS

Similarly to the GEV distribution, the GPD distribution has three
parameters:

location ;

scale ;

shape .

μ

σ > 0

ξ
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: heavy-tailed

: light-tailed

: bounded

GENERALIZED PARETO DISTRIBUTIONS TYPES

ξ > 0

ξ = 0

ξ < 0
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Note that exceedances can
occur in clusters due to the
same meteorological
forcing: this violates the
assumption of
independence.

PEAKS OVER THRESHOLDS EXAMPLE
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However, as Arns et al
(2015) note, there is no
clear declustering time
period to use: need to rely
on physical understanding
of events and "typical"
durations.

PEAKS OVER THRESHOLDS EXAMPLE
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https://doi.org/10.1016/j.coastaleng.2013.07.003


For a threshold of 0.5m for
the weather contribution of
our tide gauge data, the
maximum-likelihood
estimate is:

 (assumed);

;

.

Model
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GP FIT: TIDE GAUGE DATA

μ = 0

σ = 0.35

ξ = −0.41
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GP FIT DEPENDS ON THE THRESHOLD!

Note that the GP fit is for the amount by which the distribution
exceeds the threshold (usually  changes).

So a new threshold means a new fit is required.

σ
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SELECTING A THRESHOLD

Selecting a threshold requires some careful thought (and
hopefully is decision-relevant!).

Too high: Not many exceedances, estimator won't be great.

Too low: Too many exceedances, distribution will be poorly
approximated by a GP.
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POISSON-GP PROCESSES

Peaks over Thresholds models are often paired with a Poisson
process, which models the number of times an event occurs
using a Poisson distribution,

Then, for each , sample

n ∼ Poisson(λu).

i = 1, … , n

Xi ∼ GeneralizedPareto(u, σ, ξ).
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RETURN LEVELS FOR PP-GP PROCESSES

Return levels and periods for these processes need to account
for both the rate of exceedance  and the distribution of peaks
over the threshold:

so a return level corresponding to return period  is obtained by
setting this equal to  and solving for .

λu

P(X ≤ x) = 1 − λu[1 + ξ(
x − u

σ
)]

−1/ξ

,

s

1 − 1/s x
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KEY TAKEAWAYS
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KEY TAKEAWAYS

Risk analysis is often concerned with extremes (e.g. occurrence
of storm tides).

Extreme values can be modeled as block maxima or peaks-over-
thresholds.

Block maxima: Generalized Extreme Value distributions.

Peaks-Over-Thresholds: Generalized Pareto distributions (plus
maybe Poisson processes).

Statistical models are highly sensitive to details: shape
parameters , thresholds , etc.

Models assume independent variables.

ξ u
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WHAT WE HAVEN'T DISCUSSED

What happens if these extremes change? This is typically how
climate change impacts systems. This is the world of
nonstationarity, which we will discuss later.
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WHAT WE HAVEN'T DISCUSSED

What happens if these extremes change? This is typically
how climate change impacts systems. This is the world of
nonstationarity, which we will discuss later.

Multivariate extremes are difficult: what does this even
mean?

Often require copulas to "glue" distributions together. We
might discuss this if we have time.
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UPCOMING SCHEDULE
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UPCOMING SCHEDULE

Wednesday: Lab on extreme value distributions.

Next Monday: Nonstationarity and hypothesis testing.
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