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REVIEW: MODEL ASSESSMENT
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IS OUR MODEL APPROPRIATE?

This means that are a large number of models under
consideration.

In general, we are in an -open setting: no model is the
"true" data-generating model, so we want to pick a model
which performs well enough for the intended purpose.

The contrast to this is -closed, in which one of the models
under consideration is the "true" data-generating model, and
we would like to recover it.

M

M
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MODEL ASSESSMENT AND HYPOTHESIS

TESTING

Evaluating the relative skill of different models can be thought
of as a generalization of null hypothesis-testing.

Can embed more nuanced and specific hypotheses;

Compare proposed data-generating processes, instead of just
comparing a "null" and an "alternative" under null assumptions.
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MODEL ASSESSMENT CRITERIA

How do we assess models?

Generally, through predictive performance: how probable is
some data (out-of-sample or the calibration dataset)?
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PARSIMONY AND MODEL SELECTION
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WHAT IS THE GOAL OF MODEL SELECTION?

Key Idea: Model selection consists of navigating the bias-
variance tradeoff.

Model error (e.g. RMSE) is a combination of irreducible error,
bias, and variance.

Bias can come from under-dispersion (too little complexity) or
neglected processes;

Variance can come from over-dispersion (too much complexity)
or poor identifiability.
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If either of these is high,
the model's predictive
ability will be poor!

BIAS-VARIANCE TRADEOFF
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MODEL "COMPLEXITY" AND BIAS/VARIANCE

Model complexity is not necessarily the same as the number of
parameters.

Sometimes processes in the model can compensate for each
other, which can help improve the representation of the
dynamics and reduce error/uncertainty even when additional
parameters are included.
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OCCAM'S RAZOR

Occam's Razor:

Entities are not to be multiplied without necessity.

Credited to William of Ockham

Appears much earlier in the works of Maimonides, Ptolemy, and
Aristotle

First formulated as such by John Punch (1639)
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"ZEBRA" PRINCIPLE

More colloquially:

When you hear hoofbeats, think of horses, not zebras.

— Theodore Woodward
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ASIDE: WHAT ERROR TO USE?

There are many metrics we can use to assess error.

Common Framework: Specify a loss function which penalizes
based on deviation between prediction (point or probabilistic)
and the observation.

Zero-One loss

Logarithmic loss

Quadratic loss
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ASIDE: WHAT ERROR TO USE?

Can also think of inference in terms of loss-minimization
relative to "true" parameter values, e.g.:

the posterior mode minimizes the zero-one loss.

the posterior median minimizes the linear loss

the posterior mean minimizes the quadratic loss.
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POINT ESTIMATE ERROR FUNCTIONS

For point estimates, measures associated with loss functions
are called "scoring functions" (overview: Gneiting (2011)):

For example, the squared scoring function results in the mean-
squared error.

S̄ =
1

n

n

∑
i=1

S(xi, yi)
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PROBABILISTIC FORECASTS

For probabilistic estimates, these are called "scoring rules"
(overview: Gneiting & Raftery (2007)) and are based on the
probability assigned to the observed event by the forecast:

Quadratic score

Logarithmic score

Continuous Ranked Probability Score (CRPS)
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LOG-LIKELIHOOD AS PREDICTIVE FIT

MEASURE

The measure of predictive fit that we will use is the log
predictive density or log-likelihood of a replicated data
point/set, .

For normally-distributed data, this is proportional to the mean-
squared error.

p(yrep|θ)
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LOG-LIKELIHOOD AS PREDICTIVE FIT

MEASURE

Why use the log-likelihood density instead of the log-posterior?

The likelihood captures the data-generating process;

The posterior includes the prior, which is only relevant for
parameter estimation.

Important: This means that the prior is still relevant in
predictive model assessment, and should be thought of as part
of the model structure!
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CROSS-VALIDATION

The "gold standard" way to test for predictive performance is
cross-validation:

1. Split data into training/testing sets;

2. Calibrate model to training set;

3. Check for predictive ability on testing set.
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CROSS-VALIDATION

Leave-One-Out Cross-Validation: Drop one value, refit model
on rest of data, check for prediction.

This is related to the posterior predictive distribution

p(yrep|y) = ∫
θ

p(yrep|θ)p(θ|y)dθ.
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CROSS-VALIDATION

Leave- -Out Cross-Validation: Drop  values, refit model on
rest of data, check for prediction.

As , this reduces to the prior predictive distribution

which is also the marginal likelihood of the model.

k k

k → n

p(yrep) = ∫
θ

p(yrep|θ)p(θ)dθ,
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CROSS-VALIDATION

The problems:

This can be very computationally expensive!

We often don't have a lot of data for calibration, so holding some
back can be a problem.

How to divide data with spatial or temporal structure? This can
be addressed by partitioning the data more cleverly (e.g. leaving
out future observations), but makes the data problem worse.
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EXPECTED OUT-OF-SAMPLE PREDICTIVE

ACCURACY

Instead, we will try to compute the expected out-of-sample
predictive accuracy.

The out-of-sample predictive fit of a new data point  is~yi

log ppost(~yi) = logEpost [p(~yi|θ)]

= log ∫ p( ~yi|θ)ppost(θ) dθ.
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EXPECTED OUT-OF-SAMPLE PREDICTIVE

ACCURACY

However, the out-of-sample data  is itself unknown, so we
need to compute the expected out-of-sample log-predictive
density

~yi

elpd = expected log-predictive density for ~yi
= EP [log ppost(~yi)]

= ∫ log (ppost(~yi))P(~yi) d~y.
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EXPECTED OUT-OF-SAMPLE PREDICTIVE

ACCURACY

But we don't know the "true" distribution of new data !

We need some measure of the error induced by using an
approximating distribution  from some model.

P

Q
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KULLBACK-LEIBLER DIVERGENCE
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KULLBACK-LEIBLER DIVERGENCE

Suppose a distribution  denotes "reality" and  is an
approximating distribution.

Kullback-Leibler divergence:

Is a measure of the deviation between  and ;

Has a connection to information theory (average number of bits
to re-encode samples from  using a -code);

Can be interpreted as the "surprise" when using  as an
approximation to .

P Q

P Q

P Q

Q

P
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KULLBACK-LEIBLER DIVERGENCE

Formula for K-L Divergence:

Note that  is a divergence, not a distance, as it is not
symmetric.

DKL(P ||Q) = ∫ p(x) log(
p(x)

q(x)
) dx

DKL
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K-L DIVERGENCE AND SCORING FUNCTIONS

 is the divergence resulting from the logarithmic scoring
function.

In other words, it is the natural measure of model error when
using the log-predictive density.

DKL
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COMPUTING K-L DIVERGENCE

However, computing K-L divergence is fraught for model
selection: we don't actually know the "true" data generating
model.
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INFORMATION CRITERIA
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INFORMATION CRITERIA OVERVIEW

"Information criteria" refers to a category of estimators of
prediction error.

The idea: estimate predictive error without having access to the
"true" model .P
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INFORMATION CRITERIA OVERVIEW

There is a common framework for all of these:

If we compute the expected log-predictive density for the
existing data , this will be too good of a fit and will
overestimate the predictive skill for new data.

We can adjust for that bias by correcting for the effective
number of parameters, which can be thought of as the expected
degrees of freedom in a model contributing to overfitting.

p(y|θ)
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AKAIKE INFORMATION CRITERION

The "first" information criterion that most people see is the
Akaike Information Criterion (AIC).

This uses a point estimate (the maximum-likelihood estimate 
) to compute the log-predictive density for the data,

corrected by the number of parameters :
θ̂MLE

k

êlpdAIC = log p(y|θ̂MLE) − k.

34 / 60



AKAIKE INFORMATION CRITERION

The AIC is defined as  (for "historical" reasons; this
is called the deviance scale).

Due to this convention, lower AICs are better (they correspond
to a higher predictive skill).

−2êlpdAIC
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AKAIKE INFORMATION CRITERION

In the case of a normal model with independent and
identically-distributed data and uniform priors,  is the
"correct" bias term so that  converges to the K-L
divergence (there are corrections when the sample size is
sufficiently small).

However, with more informative priors and/or hierarchical
models, the bias correction  is no longer appropriate, as there
is less "freedom" associated with each parameter.

k

êlpdAIC

k
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Consider two SLR models:

Quadratic

Rahmstorf

We can think of these as
alternative hypotheses
about the influence of
warming on SLR.

AIC: EXAMPLE WITH SLR DATA
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AIC: EXAMPLE WITH SLR DATA

These both have four parameters (including the error variance),
so , and the difference is in the log-likelihood of the MLE
estimate.

Quadratic AIC: 895

Rahmstorf AIC: 864

k = 4
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AIC: EXAMPLE WITH SLR DATA

The actual values here don't matter; what's important when
comparing models within a set  are the differences

Some basic rules of thumb (from Burnham & Anderson (2004)):

 means the model has "strong" support across ;

 suggests "less" support;

 suggests "weak" or "no" support.

M

Δi = AICi − AICmin.

Δi < 2 M

4 < Δi < 7

Δi > 10
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So in this case, the
quadratic model has weak
support relative to the
Rahmstorf model, which
might be interpreted as
supporting the hypothesis
that SLR increases are
related to temperature
increases.

AIC: EXAMPLE WITH SLR DATA
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AIC AND MODEL AVERAGING

 can be thought of as a measure of the likelihood of
the model given the data . The ratio

can approximate the relative evidence for  versus .

exp(−Δi/2)
y

exp(−Δi/2)/ exp(−Δj/2)

Mi Mj
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AIC AND MODEL AVERAGING

This gives rise to the idea of Akaike weights:

Model projections can then be weighted based on , which
can be interpreted as the probability that  is the K-L
minimizing model in .

wi =
exp(−Δi/2)

∑M

m=1 exp(−Δm/2)
.

wi

Mi

M
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ASIDE: MODEL AVERAGING VS. SELECTION

Model averaging can sometimes be beneficial vs. model
selection, as model selection can introduce bias from the
selection process (this is particularly acute for stepwise
selection due to path-dependence).
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DEVIANCE INFORMATION CRITERION

The Deviance Information Criterion (DIC) is a more Bayesian
generalization of AIC which uses the posterior mean

and a bias correction derived from the data.

θ̂Bayes = E [θ|y]
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DEVIANCE INFORMATION CRITERION

where

Then, as with AIC,

êlpdDIC = log p(y|θ̂Bayes) − pDIC,

pDIC = 2(log p(y|θ̂Bayes) − Epost [log p(y|θ)]).

DIC = −2êlpdDIC.
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DIC: EFFECTIVE NUMBER OF PARAMETERS

What is the meaning of ?

The difference between the average log-likelihood (across
parameters) and the log-likelihood at a parameter average
measures "degrees of freedom".

Note that  can be negative if the posterior mean is far from
the posterior mode: this suggests that the model is poorly
constrained and may do better on new data than the existing
data.

The DIC adjustment assumes independence of residuals for
fixed .

pDIC

pDIC
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AIC VS. DIC

AIC and DIC often give similar results, but don't have to. For
example, for the SLR example, with relatively uninformative
priors,

which based on the AIC scale suggests limited (but stronger)
evidence for the quadratic model.

The key difference is the impact of priors on parameter
estimation and model degrees of freedom.

ΔDIC ≈ 4,
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CONVERGENCE OF AIC AND DIC

Both AIC and DIC converge to the K-L divergence.

Also valuable: they both also converge to expected leave-one-
out cross-validation.
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WATANABE-AKAIKE INFORMATION

CRITERION (WAIC)

WAIC is a fully Bayesian generalization of AIC.

where

êlpdWAIC =
n

∑
i=1

log∫ p(yi|θ)ppost(θ) dθ − pWAIC,

pWAIC =
n

∑
i=1

Varpost (log p(yi|θ)).
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WATANABE-AKAIKE INFORMATION

CRITERION (WAIC)

 is an estimate of the number of "unconstrained"
parameters in the model.

A parameter counts as 1 if its estimate is "independent" of the
prior;

A parameter counts as 0 if it is fully constrained by the prior.

A parameter gives a partial value if both the data and prior are
informative.

pWAIC
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WATANABE-AKAIKE INFORMATION

CRITERION (WAIC)

WAIC can be viewed as an approximation to leave-one-out CV,
and averages over the entire posterior, vs. AIC and DIC which
use point estimates.

But it doesn't work well with highly structured data; no real
alternative to more clever uses of Bayesian cross-validation.
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BAYESIAN LOO-CV

By default, Bayesian LOO-CV is extremely expensive:

which requires refitting the model without  for every data
point.

Can think of the "number of effective parameters" as the
difference between the log-predictive density of the data set
minus the LOO-CV estimate.

loo-cv =
n

∑
i=1

log ppost(−i)(yi),

yi
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BAYESIAN LOO-CV: MORE ADVANCED

METHODS

There are approximations to Leave-One-Out Cross-Validation
which use importance sampling to avoid this, and these can be
extended to time series.

See

Vehtari et al (2015) on "Pareto-smoothed "

Bürkner et al (2020) on time-series "leave-future-out CV".
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"BAYESIAN" "INFORMATION" CRITERION

BIC:

Is not Bayesian (it relies on the MLE);

Has no relationship to information theory (unlike AIC/DIC);

Assumes -closed (e.g. that the true model is under
consideration);

BIC = −2 log p(y|θ̂MLE) + k log n.

M
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"BAYESIAN" "INFORMATION" CRITERION

BIC approximates the prior log-predictive likelihood and leave-
-out cross-validation (hence the extra penalization for

additional parameters).

Differences between BIC values can therefore be interpreted as
Bayes factors, which are ratios of marginalized likelihoods (see
Kass & Raftery (1995) for more on Bayes factors).

This is why it's odd when model selection consists of
examining both AIC and BIC: these are different quantities
with different purposes!

k
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KEY TAKEAWAYS
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KEY TAKEAWAYS

Model selection is a balance between bias (underfitting) and
variance (overfitting).

For predictive assessment, leave-one-out cross-validation is an
ideal, but hard to implement in practice (particularly for time
series).

AIC and DIC can be used to approximate K-L divergence and
leave-one-out cross-validation.

BIC is an entirely different measure, approximating the prior
predictive distribution.
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KEY CONSIDERATION

Model selection can result in significant biases when
separated from hypothesis-driven model development.

There's no free lunch: better off thinking about the scientific or
engineering problem you want to solve and use domain
knowledge/checks rather than throwing a large number of
possible models into the machinery.

Regularizing priors reduce potential for overfitting.

Model averaging (Hoeting et al (1999)) and stacking (Yao et al
(2018)) can combine multiple models as an alternative to
selection. 58 / 60
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UPCOMING SCHEDULE
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UPCOMING SCHEDULE

Wednesday: Discussion of Höge et al (2019).

Next Monday: Emulation of Complex Models
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