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REVIEW OF MODEL SELECTION
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WHAT IS THE GOAL OF MODEL SELECTION?

Key Idea: Model selection consists of navigating the bias-
variance tradeoff.

Model error (e.g. RMSE) is a combination of irreducible error,
bias, and variance.

Bias can come from under-dispersion (too little complexity) or
neglected processes;

Variance can come from over-dispersion (too much complexity)
or poor identifiability.
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LOG-LIKELIHOOD AS PREDICTIVE FIT

MEASURE

The measure of predictive fit that we will use is the log
predictive density or log-likelihood of a replicated data
point/set, .

For normally-distributed data, this is proportional to the mean-
squared error.

p(yrep|θ)
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LOG-LIKELIHOOD AS PREDICTIVE FIT

MEASURE

Why use the log-likelihood density instead of the log-posterior?

The likelihood captures the data-generating process;

The posterior includes the prior, which is only relevant for
parameter estimation.

Important: This means that the prior is still relevant in
predictive model assessment, and should be thought of as part
of the model structure!
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CROSS-VALIDATION

Cross-validation is the gold standard for predictive accuracy:
how well does the fitted model predict out of sample data?

The problems:

Leave-one-out CV can be very computationally expensive!

We often don't have a lot of data for calibration, so holding some
back can be a problem.

How to divide data with spatial or temporal structure? This can
be addressed by partitioning the data more cleverly (e.g. leaving
out future observations), but makes the data problem worse. 7 / 45



EXPECTED OUT-OF-SAMPLE PREDICTIVE

ACCURACY

Instead, we will try to compute the expected out-of-sample
predictive accuracy.

The out-of-sample predictive fit of a new data point  is~yi

log ppost(~yi) = logEpost [p(~yi|θ)]

= log ∫ p( ~yi|θ)ppost(θ) dθ.
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KULLBACK-LEIBLER DIVERGENCE

K-L Divergence can be interpreted as the "surprise" when using 
 (model approximation) as an approximation to  ("true"

data-generating process).

We use "information criteria" as an approximation based on the
existing data:

compute  as expected log-predictive density for existing
data;

correct for bias from using calibration data twice

Q P

p(y|θ)
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INFORMATION CRITERIA
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AKAIKE INFORMATION CRITERION

The AIC is defined as  (for "historical" reasons; this
is called the deviance scale).

Due to this convention, lower AICs are better (they correspond
to a higher predictive skill).

−2êlpdAIC
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AKAIKE INFORMATION CRITERION

In the case of a normal model with independent and
identically-distributed data and uniform priors,  is the
"correct" bias term so that  converges to the K-L
divergence (there are corrections when the sample size is
sufficiently small).

However, with more informative priors and/or hierarchical
models, the bias correction  is no longer appropriate, as there
is less "freedom" associated with each parameter.

k

êlpdAIC

k
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AIC AND MODEL AVERAGING

This gives rise to the idea of Akaike weights:

Model projections can then be weighted based on , which
can be interpreted as the probability that  is the K-L
minimizing model in .

wi =
exp(−Δi/2)

∑M

m=1 exp(−Δm/2)
.

wi

Mi

M
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DEVIANCE INFORMATION CRITERION

The Deviance Information Criterion (DIC) is a more Bayesian
generalization of AIC which uses the posterior mean

and a bias correction derived from the data.

θ̂Bayes = E [θ|y]
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DEVIANCE INFORMATION CRITERION

where

Then, as with AIC,

êlpdDIC = log p(y|θ̂Bayes) − pDIC,

pDIC = 2(log p(y|θ̂Bayes) − Epost [log p(y|θ)]).

DIC = −2êlpdDIC.
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DIC: EFFECTIVE NUMBER OF PARAMETERS

What is the meaning of ?

The difference between the average log-likelihood (across
parameters) and the log-likelihood at a parameter average
measures "degrees of freedom".

Note that  can be negative if the posterior mean is far from
the posterior mode: this suggests that the model is poorly
constrained and may do better on new data than the existing
data.

The DIC adjustment assumes independence of residuals for
fixed .

pDIC

pDIC
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AIC VS. DIC

AIC and DIC often give similar results, but don't have to. For
example, for the SLR example, with relatively uninformative
priors,

which based on the AIC scale suggests limited (but stronger)
evidence for the quadratic model.

The key difference is the impact of priors on parameter
estimation and model degrees of freedom.

ΔDIC ≈ 4,
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CONVERGENCE OF AIC AND DIC

Both AIC and DIC converge to the K-L divergence.

Also valuable: they both also converge to expected leave-one-
out cross-validation.
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WATANABE-AKAIKE INFORMATION

CRITERION (WAIC)

WAIC is a fully Bayesian generalization of AIC.

where

êlpdWAIC =
n

∑
i=1

log∫ p(yi|θ)ppost(θ) dθ − pWAIC,

pWAIC =
n

∑
i=1

Varpost (log p(yi|θ)).
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WATANABE-AKAIKE INFORMATION

CRITERION (WAIC)

 is an estimate of the number of "unconstrained"
parameters in the model.

A parameter counts as 1 if its estimate is "independent" of the
prior;

A parameter counts as 0 if it is fully constrained by the prior.

A parameter gives a partial value if both the data and prior are
informative.

pWAIC
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WATANABE-AKAIKE INFORMATION

CRITERION (WAIC)

WAIC can be viewed as an approximation to leave-one-out CV,
and averages over the entire posterior, vs. AIC and DIC which
use point estimates.

But it doesn't work well with highly structured data; no real
alternative to more clever uses of Bayesian cross-validation.
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BAYESIAN LOO-CV

By default, Bayesian LOO-CV is extremely expensive:

which requires refitting the model without  for every data
point.

Can think of the "number of effective parameters" as the
difference between the log-predictive density of the data set
minus the LOO-CV estimate.

loo-cv =
n

∑
i=1

log ppost(−i)(yi),

yi
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BAYESIAN LOO-CV: MORE ADVANCED

METHODS

There are approximations to Leave-One-Out Cross-Validation
which use importance sampling to avoid this, and these can be
extended to time series.

See

Vehtari et al (2015) on "Pareto-smoothed "

Bürkner et al (2020) on time-series "leave-future-out CV".
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"BAYESIAN" "INFORMATION" CRITERION

BIC:

Is not Bayesian (it relies on the MLE);

Has no relationship to information theory (unlike AIC/DIC);

Assumes -closed (e.g. that the true model is under
consideration);

BIC = −2 log p(y|θ̂MLE) + k log n.

M
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"BAYESIAN" "INFORMATION" CRITERION

BIC approximates the prior log-predictive likelihood and leave-
-out cross-validation (hence the extra penalization for

additional parameters).

Differences between BIC values can therefore be interpreted as
Bayes factors, which are ratios of marginalized likelihoods (see
Kass & Raftery (1995) for more on Bayes factors).

This is why it's odd when model selection consists of
examining both AIC and BIC: these are different quantities
with different purposes!

k
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KEY TAKEAWAYS: MODEL SELECTION
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KEY TAKEAWAYS

Model selection is a balance between bias (underfitting) and
variance (overfitting).

For predictive assessment, leave-one-out cross-validation is an
ideal, but hard to implement in practice (particularly for time
series).

AIC and DIC can be used to approximate K-L divergence and
leave-one-out cross-validation.

BIC is an entirely different measure, approximating the prior
predictive distribution.
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KEY CONSIDERATION

Model selection can result in significant biases when
separated from hypothesis-driven model development.

There's no free lunch: better off thinking about the scientific or
engineering problem you want to solve and use domain
knowledge/checks rather than throwing a large number of
possible models into the machinery.

Regularizing priors reduce potential for overfitting.

Model averaging (Hoeting et al (1999)) and stacking (Yao et al
(2018)) can combine multiple models as an alternative to
selection. 28 / 45

https://doi.org/10.1214/ss/1009212519
file:///Users/vs498/Teaching/BEE6940/climate-risk-analysis/website/lecture-notes/13-emulation/10.1214/17-BA1091


MODEL SIMPLICITY: TRADEOFFS
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PARSIMONY AS A MODELING VIRTUE

Parsimony can reduce the chance of overfitting and increased
variance, all else being equal.

Model simplicity has another advantange: simpler models are
less computationally expensive.
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PARSIMONY AS A MODELING VIRTUE

Parsimony can reduce the chance of overfitting and increased
variance, all else being equal.

Model simplicity has another advantange: simpler models are
less computationally expensive.

Why is this beneficial?
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More thorough
representation of
uncertainties

Can focus on "important"
characteristics for
problem at hand

Potential increase in
generalizability

Source: Helgeson et al (2022)

BENEFITS OF COMPUTATIONAL SIMPLICITY
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DOWNSIDES TO COMPUTATIONAL SIMPLICITY

Potential loss of salience

May miss important dynamics

Parameter/dynamical compensation can result in loss of
interpretability

32 / 45



UPSHOT OF SIMPLICITY TRADEOFFS

Simple models can be epistemically and practically valuable.

But:

Need to carefully select which processes/parameters are
included in the simplified representation, and at what
resolution.
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EMULATION
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APPROXIMATING COMPLEX MODELS

Challenge: How do we simplify complex models to keep key
dynamics but reduce computational expense?

Approximate (or emulate) the model response surface.
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APPROXIMATING COMPLEX MODELS

Challenge: How do we simplify complex models to keep key
dynamics but reduce computational expense?

Approximate (or emulate) the model response surface.

1. Evaluate original model at an ensemble of points (design of
experiment)

2. Calibrate emulator against those points.

3. Use emulator for UQ with MCMC or other methods.
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EMULATION OF A 1-D TOY MODEL

Source: Haran et al (2017)
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EMULATING HIGHER DIMENSIONAL OUTPUT

Source: Haran et al (2017)
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COMMON EMULATION METHODS

Gaussian Processes

Polynomial Chaos Expansion

Machine Learning
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EXPERIMENTAL DESIGN

Many of these methods (Gaussian processes in particular) only
work for a few dimensions.

Need to:

1. Select key parameters with a sensitivity analysis.

2. Use an appropriate sampling of points (e.g. Latin Hypercube) for
emulator training.

3. Select an appropriate metric for approximation.
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IS EMULATION ALWAYS THE RIGHT CHOICE?

Source: Lee et al (2020)
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IS EMULATION ALWAYS THE RIGHT CHOICE?

This error can have large knock-on effects for risk analysis:

Source: Lee et al (2020)
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EMULATION: KEY TAKEAWAYS
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EMULATION TAKEAWAYS

Model simplicity can be valuable.

Tradeoff between computational expense and fidelity of
approximation.

Emulation is a common approach.

Emulator methods have different pros and cons which can make
them more or less important.

Emulator error can strongly influence resulting risk estimates.
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UPCOMING SCHEDULE

44 / 45



UPCOMING SCHEDULE

Wednesday: Discussion of Helgeson et al (2022).

Monday: Modeling exposure, vulnerability, and response.
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