
BEE 4750 Lab 1: Julia and GitHub Basics

2024-08-05

Due Date

Wednesday, 8/28/24, 9:00pm

Setup

The following code should go at the top of most Julia scripts; it will load the local package
environment and install any needed packages. You will see this often and shouldn’t need to
touch it.

import Pkg
Pkg.activate(".")
Pkg.instantiate()

This next cell loads packages which are required for the rest of the code evaluation. In this
case, we only need to load the Plots.jl plotting package, but you will see others over the
course of the semester (and can add more if desired; just make sure that you’ve added the new
packages to the environment). Standard Julia practice is to load all of the needed packages at
the top of the file.

Warning

Loading packages can take a while, especially the first time! Julia tries to precompile all
of the packages you’re using so repeat use is faster, but this can be quite slow at first.

using Plots

1

https://viveks.me/environmental-systems-analysis/tutorials/julia-basics.html#package-management
https://viveks.me/environmental-systems-analysis/tutorials/julia-basics.html#package-management

Introduction

Julia

Julia is an up-and-coming language, originally developed for scientific programming. While
learning a new programming language always has its hiccups, the good news is that if you’ve
programmed in a high-level language such as Python or MATLAB, most Julia concepts should
look familiar.

If you have not successfully set up Julia, follow the instructions in Tools Setup and/or ask for
help.

You can use other editors for this course, but our recommendation is Visual Studio Code with
the Julia extension, which will make life a lot simpler! You should have set this up by following
the Tools Setup instructions, but if not, do so now and/or ask for help.

Jupyter Notebooks

Jupyter notebooks integrate text and equations in Markdown with Julia (or Python, or R)
code. To do this, Jupyter notebooks consist of two types of “cells”: code cells and Markdown
(text) cells.

Click once on this section of text. A box will appear around this text (and some areas
above/below it) - all of that is within this cell.

Markdown is a text markup framework for formatting language that makes things look pretty
when viewed across different platforms: web browsers, notebooks, and so forth. Text written in
Markdown can also include hyperlinks, LaTeX equations, section headers, and images, among
other features (most of the course website and the lecture notes were all written in Markdown!).
Here is a basic Markdown cheat sheet.

What you are looking at right now is the formatted text after the Markdown is processed. To
see the raw Markdown, do one of:

• press Enter while that cell is selected, or
• double-click on that cell.

A couple of the features you will see in this Markdown cell:

• The --- command creates a horizontal line. This is also nice for separating sections.
• Backticks (`...`) can be used to format and highlight code, keystrokes, etc.

2

https://viveks.me/environmental-systems-analysis/setup.html
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://viveks.me/environmental-systems-analysis/setup.html
https://viveks.me/climate-risk-analysis
https://www.markdownguide.org/cheat-sheet/

• The # sign is used to create a new section header; two # signs (##) is used to create a
new subsection header; ### creates a subsubsection, and so on.

• You can create a bulleted list by using the asterisk * or a dash - and a space.
• You can create regular text by just typing as usual.
• You can create bold-faced text by wrapping it with two asterisks on both sides.
• You can create italicized text by wrapping it with a single asterisk on both sides.
• To create a new paragraph, you must include a blank line between the old and new

paragraphs.

At this point you might be wondering how to turn this cell back into the fully formatted
Markdown text instead of the raw Markdown you’re probably still looking at. You have a
couple of options, depending on your platform, but the most consistent is to type Shift +
Enter to execute the cell (this is also how to run code, but more on that later).

Additionally, you will frequently need to create new cells in your Jupyter notebooks. How you
do this will depend on how you interact with the notebook, but try to figure this out now.

One tip is to think carefully about what bits of code should be in the same cell, as you typically
only see output from the last command in a cell. For example, compare the following:

x = 5
sin(x)

-0.9589242746631385

with

x = 5

5

sin(x)

-0.9589242746631385

In Julia, you can also suppress the output of a command with a semi-colon:

sin(x);

3

which can help if you want to split some code out for clarity or to insert some text prior to it,
but don’t want to clutter the notebook with its output.

For code cells, to execute the commands within the cell, we also press Shift+Enter.

Finally, make sure that you evaluate all of the code cells in order before submitting.
One bad outcome with notebooks occurs when cells are evaluated out of order, so fixed bugs
and edits in previous cells do not get a chance to propagate down. You can do this with the
Run All command in whichever interface you’re using to edit your notebook.

Julia Basics

There are many tutorials and references for Julia, including a basics overview on the class
website. Please feel free to reference these as you work through any part of the course.

Formatting Math

It will often be helpful to include nicely-formatted mathematics in a notebook. Markdown
accomodates this using LaTeX syntax. A LaTeX cheatsheet is available on the class website,
and many other guides exist online.

Below is an example of a formatted equation:

𝑥 = 5.

Looking For Help

There is no shame in using Google, or other resources, for help when programming. There are
many, many times when you can’t quite get the syntax to work, can’t quite figure out the right
package or command to use, or are feeling too lazy or overwhelmed (I’m not judging either of
those!) to dig through the documentation. Some good resources include:

• Stack Overflow is a treasure trove of answers;
• The official Julia forum and the Julia Subreddit are also very useful.

You are also highly encouraged to post on Ed Discussion, though getting a response might be
less immediate. Just be mindful that to get good answers, you have to help people help you,
and make sure to give credit to any resources that were helpful!

4

../tutorials/julia-basics.html
../tutorials/julia-basics.html
https://stackoverflow.com/
https://discourse.julialang.org/
https://www.reddit.com/r/Julia/
https://us.edstem.org
https://stackoverflow.com/help/how-to-ask

Exercises (3 points)

Use your understanding of Julia syntax and the GitHub workflow to complete the following
(hopefully short) exercises. Convert your completed lab assignment to a PDF and submit it
to the Gradescope Assignment “Lab 1”.

Remember to:

• Include a (succint but clear) writeup of the core idea underlying your code, through some
combination of equations, text, and algorithms. As you are not required to submit your
code, we will not be looking at it in detail, and instead will rely on those writeups to
assess whether your approach is correct.

• If using the notebook, evaluate all of your code cells, in order (using a Run All command).
This will make sure all output is visible and that the code cells were evaluated in the
correct order.

• Tag each of the problems when you submit to Gradescope; a 10% penalty will be deducted
if this is not done.

Computing a Dot Product

Given two numeric arrays x and y, write a function to compute their dot product if they have
equal length, and return an error if not (this is useful for debugging!). Use the following code
as a starting point.

function dot_product(x, y)
if ... # insert test condition for equal lengths

compute and return dot product
else

throw(DimensionMismatch("length of x not equal to length of y"))
end

end

Here are some tests to make sure your code works as intended. Tests like these are useful to
make sure everything works as intended. One reason to split your code up into functions is
that it makes it straightforward to write tests to make sure each piece of your code works,
which makes it easier to identify where errors are occuring.

dot_product([1 2 3], [4 5 6])

If you know the value you should get, you can write a more formal test using the @assert
macro, which is a good way to “automate” checking (since you get an obvious error if the code
doesn’t work as desired):

5

@assert dot_product([1 2 3], [4 5 6]) == 32

Let’s also make sure we get an error when the dimensions of the two vectors don’t match:

dot_product([1 2 3], [4 5])

Making a Plot

Write a function to compute the square of an integer x. Evaluate this function for integers
between 𝑥 = −5 and 𝑥 = 5 and make a plot of the squared values (you can find a quick guide
to making various types of plots here). Make sure to label your axes.

insert your code here

Commit and Push Your Changes to GitHub

After completing the previous two exercises, commit your solution file (notebook or otherwise)
and push to GitHub. Use an informative commit message which makes it clear what changes
you’ve made. The specific workflow for this will vary depending on how you’re writing up your
solutions; please search for specifics and ask for help as needed!

Useful Commit Sizes

Ideally, you’d commit whenever you make a “substantial” enough change that you want
to lock in, such as writing the core code for a problem or completing a problem, if you’re
preparing code to be used elsewhere (by yourself or others), or if you want to ask for
help. git lets you revert changes back to a previous commit, so it’s easy to undo changes
or updates which broke something that was previously working, so changing too many
things at once can make it hard to keep track of what worked when.
But in this case, go ahead and just commit after finishing the problems.

Push the repository with these commits to GitHub and take a screenshot of the repository page
(https://github.com/BEE4750-FA24/<username>/lab01) which shows the updated reposi-
tory. Include that screenshot in your submission as the solution to this problem.

6

https://viveks.me/environmental-systems-analysis/tutorials/julia-plots.html

Submitting PDF

Important

These submission instructions will not be repeated on future assignments!

Export your writeup as a PDF and submit it to the “Lab 1” assignment on Gradescope. Make
sure that you tag pages corresponding to relevant problems to avoid a 10% penalty.

Printing Code to PDF

You are not required to submit your code when submitting assignments. However, when
printing a notebook to PDF, long lines will run off the edge of code cells, which may
result in comments or code being hidden. If you see this, go back to the notebook and
break up long lines into shorter onces (for example, see the comment in the above code
cell) to ensure key parts of your results aren’t missing.

7

	Setup
	Introduction
	Julia
	Jupyter Notebooks
	Julia Basics
	Formatting Math
	Looking For Help

	Exercises (3 points)
	Computing a Dot Product
	Making a Plot

	Commit and Push Your Changes to GitHub
	Submitting PDF

