Lecture 16
October 28, 2024
Text: VSRIKRISH to 22333
Last Class: Box (or “airshed”) model of air pollution
Today: Point sources and receptors (plume/puff models)
\[\begin{equation} C(x,y,z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left[-\frac{1}{2} \left(\frac{y^2}{\sigma_y^2} + \frac{(z - H)^2}{\sigma_z^2}\right)\right] \end{equation}\]
Variable | Meaning |
---|---|
\(C\) | Concentration (g/m\(^3\)) |
\(Q\) | Emissions Rate (g/s) |
\(H\) | Effective Source Height (m) |
\(u\) | Wind Speed (m/s) |
Use the advective-diffusion equation to describe the mass-balance of a small air parcel :
\[ \frac{\partial C}{\partial t} + \color{blue}\overbrace{[D + K] \nabla^2 C}^\text{diffusion} \color{black} - \color{red}\overbrace{\overrightarrow{u} \cdot \overrightarrow{\nabla} C}^\text{advection} = 0\]
Concentration gradient + Diffusion ⇒ Flux
Fick’s law: mass transfer by diffusion
\[F_x = D \frac{dC}{dx}\]
Concentration gradient + Turbulent mixing ⇒ Flux
\[F_x = K_{xx}\frac{dC}{dx}\]
The dispersion coefficient \(K_{xx}\) depends on flow/eddy characteristics.
\[\frac{\partial C}{\partial t} + \vec{u} \cdot \vec{\nabla} C - [D + K] \nabla^2 C = 0\]
Assumptions:
\[ \frac{\partial C}{\partial t} = 0\]
\[\frac{\partial C}{\partial t} + \vec{u} \cdot \vec{\nabla} C - [D + K] \nabla^2 C = 0\]
Assumptions:
\[\vec{u} \cdot \vec{\nabla} C = u_x \frac{\partial C}{\partial x} + \cancel{u_y \frac{\partial C}{\partial y}} + \cancel{u_z \frac{\partial C}{\partial z}}\]
\[\frac{\partial C}{\partial t} + \vec{u} \cdot \vec{\nabla} C - [D + K] \nabla^2 C = 0\]
Assumptions:
\[-[\cancel{D} + K] \nabla^2 C = \cancel{K_{xx}} \frac{\partial^2 C}{\partial x^2} + K_{yy} \frac{\partial^2 C}{\partial y^2} + K_{zz} \frac{\partial^2 C}{\partial z^2}\]
With these assumptions, the equation simplifies to:
\[u \frac{\partial C}{\partial x} = K_{yy} \frac{\partial^2 C}{\partial y^2} + K_{zz}\frac{\partial^2 C}{\partial z^2}\]
Assume mass flow through vertical plane downwind must equal emissions rate \(Q\):
\[Q = \iint u C dy dz\]
Solving this PDE:
\[C(x,y,z) = \frac{Q}{4\pi x \sqrt{K_{yy} + K_{zz}}} \exp\left[-\frac{u}{4x}\left(\frac{y^2}{K_{yy}} + \frac{(z-H)^2}{K_{zz}}\right)\right]\]
Now substitute
\[\begin{aligned} \sigma_y^2 &= 2 K_{yy} t = 2 K_{yy} \frac{x}{u} \\ \sigma_z^2 &= 2 K_{zz} \frac{x}{u} \end{aligned}\]
This results in:
\[ C(x,y,z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left[-\frac{1}{2}\left(\frac{y^2}{\sigma_y^2} + \frac{(z-H)^2}{\sigma_z^2}\right) \right]\]
which looks like a Gaussian distribution probability distribution if we restrict to \(y\) or \(z\).
We can account for this extra term using a flipped “image” of the source.
\[\begin{aligned} C(x,y,z) = &\frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(\frac{-y^2}{2\sigma_y^2} \right) \times \\\\ & \quad \left[\exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right) + \exp\left(\frac{-(z+H)^2}{2\sigma_z^2}\right) \right] \end{aligned}\]
Assumptions:
Values of \(\sigma_y\) and \(\sigma_z\) matter substantially for modeling plume spread downwind. What influences them?
Main contribution: atmospheric stability
Greater stability ⇒ less vertical/cross-wind dispersion.
Pasquill (1961): Six stability classes.
Contributors to atmospheric stability:
Class | Stability | Description |
---|---|---|
A | Extremely unstable | Sunny summer day |
B | Moderately unstable | Sunny & warm |
C | Slightly unstable | Partly cloudy day |
D | Neutral | Cloudy day or night |
E | Slightly stable | Partly cloudy night |
F | Moderately stable | Clear night |
\[\begin{aligned} \sigma_y &= ax^{0.894} \\ \sigma_z &= cx^d + f \end{aligned}\]
Note: here \(x\) is in km, while in the plume equation \(y\), \(z\) are in m!
Then take estimates for \(\sigma_y\) and \(\sigma_z\) and plug into plume dispersion equation
\[\begin{aligned} C(x,y,z) = &\frac{Q}{2\pi u {\color{red}\sigma_y \sigma_z}} \exp\left(\frac{-y^2}{2{\color{red}\sigma_y^2}} \right) \times \\\\ & \quad \left[\exp\left(\frac{-(z-H)^2}{2{\color{red}\sigma_z^2}}\right) + \exp\left(\frac{-(z+H)^2}{2{\color{red}\sigma_z^2}}\right) \right] \end{aligned}\]
The emission rate of SO2 from a smokestack is 100 g/s. At 3km downwind on a clear fall evening (class F), what is the centerline ground-level concentration of SO2? The effective plume height is 41m and the wind speed at this height is 2.5 m/s. Under these conditions,
\[ \sigma_y = 34x^{0.894} \]
\[ \sigma_z = \begin{cases}14.35x^{0.740} - 0.35 & x < 1 \text{km} \\ 62.6x^{0.180} - 48.6 & x > 1 \text{km} \end{cases} \]
Wednesday: Managing multiple point sources of air pollution
Next Week: Mixed-Integer Linear Programming and Applications