
Homework 1 Solutions

2024-09-07

Overview

import Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()

using Random
using Plots
using GraphRecipes
using LaTeXStrings

this sets a random seed, which ensures reproducibility of random number
generation. You should always set a seed when working with random
numbers.

↪

↪

Random.seed!(1)

TaskLocalRNG()

Problems (Total: 50/60 Points)

Problem 1 (15 points)

The following subproblems all involve code snippets that require debugging. For each of
them:

• identify and describe the logic and/or syntax error;
• write a fixed version of the function;
• use your fixed function to solve the problem.

1

Problem 1.1

The problem is with the initialization min_value = 0, which means no other values can be
below it. Instead, we can initialize min_value to be array[1] and start looping at index
i=2:

function minimum(array)
min_value = array[1] 1

for i in 2:length(array)
if array[i] < min_value

min_value = array[i]
end

end
return min_value

end

array_values = [89, 90, 95, 100, 100, 78, 99, 98, 100, 95]
@show minimum(array_values);

1 Initializing min_value at array[1] ensures that we start with a candidate value; then we
can loop beginning with index 2.

minimum(array_values) = 78

Problem 1.2

There are two issues here.

1. The first error is trying to access average_grades, which is only defined inside the
class_average() function. This is an issue of scope: the variable average_grades
doesn’t exist globally.

2. The second error is that mean() is not part of the Base Julia library, but rather the
Statistics package (part of the usual Julia installation, but needs to be explicitly
imported). We could import it with using Statistics and use mean(), but in this case
let’s just take the sum and divide by the length.

student_grades = [89, 90, 95, 100, 100, 78, 99, 98, 100, 95]
function class_average(grades)
average_grade = sum(grades) / length(grades)
return average_grade

end

2

avg_grade = class_average(student_grades) 1

@show avg_grade;

1 Now avg_grade exists after being assigned the output of class_average(). Note that
we didn’t reuse the name average_grade as that could result in strange outcomes if
notebook cells were run out of order.

avg_grade = 94.4

Problem 1.3

The setindex error comes from the use of zero() instead of zeros():

• zero(n) creates a zero variable of the same type of the argument n (e.g. zero(1) is 0
and zero(1.5) is 0.0).

• zeros(n) creates an array of zeroes of dimension n, where n can be an integer or a tuple
(for a matrix or higher-dimensional array).

As a result, the original call outcomes = zero(n_trials) sets outcomes=0, but then when
we try to set outcomes[1] in the loop, this is undefined as a scalar does not have an index,
resulting in the error.

function passadieci()
this rand() call samples 3 values from the vector [1, 6]
roll = rand(1:6, 3)
return roll

end
n_trials = 1_000
outcomes = zeros(n_trials) 1

for i = 1:n_trials
outcomes[i] = (sum(passadieci()) > 11) 2

end
win_prob = sum(outcomes) / n_trials # compute average number of wins
@show win_prob;

1 Changed zero to zeroes; note that it’s generally preferable to initialize an array of the
desired size instead of creating an empty vector and using append, as that approach can
get quite slow as the number of append calls increases.

2 Now that outcomes is a vector, we can access its indexed values.

win_prob = 0.374

3

https://docs.julialang.org/en/v1/base/numbers/#Base.zero
https://docs.julialang.org/en/v1/base/arrays/#Base.zeros

We could also use comprehensions and broadcasting (applying a function across each element
of an array) instead of initializing outcomes as a zero vector and looping to fill it:

rolls = [passadieci() for i in 1:n_trials] 1

outcomes = sum.(rolls) .> 11 2

win_prob = sum(outcomes) / n_trials # compute average number of wins
@show win_prob;

1 This is an example of a comprehension, which is an inline loop that produces an array; the
advantage is that this is sometimes more readable than an explicit loop when the in-loop
commands are short.

2 This is an example of broadcasting (actually twice), indicated by the use of the decimal .
in function calls. sum.(v) applies the function sum to every element of v, so that adds
each of the individual roll vectors to get the sum of those three dice, and .> does an
element-wise comparison of each of those sums to 11. You would get an error if you tried
sum.(rolls) > 11 because Julia does not want to make assumptions about your intent
in comparing a vector with a scalar.

win_prob = 0.364

Problem 2 (5 points)

Let’s outline the steps in mystery_function:

1. Initialize an empty vector.
2. If a value v is not already in y, add v to y.
3. Return after looking at all values.

This means that mystery_function selects and returns the unique values in values, which is
confirmed by the test case.

There are many ways to add comments, but we could comment as follows:

mystery_function:
Inputs:
- values: vector of numeric values
Outputs:
- vector of unique values from the input
function mystery_function(values)

y = [] # initialize as an empty vector because we don't know how many
values we will end up with↪

4

https://viveks.me/environmental-systems-analysis/tutorials/julia-basics.html#comprehensions
https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting

for v in values
if !(v in y) # if a value is not already in y

append!(y, v) # append to y
end

end
return y

end

list_of_values = [1, 2, 3, 4, 3, 4, 2, 1]
@show mystery_function(list_of_values);

mystery_function(list_of_values) = Any[1, 2, 3, 4]

The built-in Julia function which does the same thing is unique() (found using a Google
search for “unique Julia vector function”).

@show unique(list_of_values);

unique(list_of_values) = [1, 2, 3, 4]

Problem 3 (10 points)

You’re interested in writing some code to remove the mean of a vector.

• Write a function compute_mean(v) which sums all of the elements of a vector v using a
for loop and computes the mean.

• Make a random vector random_vect of length 10 using Julia’s rand() function. Use
your compute_mean() function to calculate its mean and subtract it from random_vect
without a loop (using a Julia technique called broadcasting; feel free to consult the
Julia documentation and search as necessary). Check that the new vector has mean
zero.

Our compute_mean function should:

1. Initialize a running sum at 0;
2. Loop over all elements of v;
3. Add each element in turn to the running sum;
4. Divide the running sum by the number of elements and return.

5

function compute_mean(v)
v_sum = 0
for val in v

v_sum += val
end
return v_sum / length(v)

end

random_vect = rand(10)
rand_mean = compute_mean(random_vect)
@show rand_mean;

rand_mean = 0.3573789691628376

To subtract off the mean from random_vect, we can broadcast the subtraction operator by
putting a decimal in front: .-.1

random_vect_demean = random_vect .- rand_mean
@show compute_mean(random_vect_demean);

compute_mean(random_vect_demean) = 2.2204460492503132e-17

We have produced a mean-zero random vector! But this isn’t exactly zero due to numerical
precision. This doesn’t really matter, as the non-zero entries are insignificant digits, which we
can see if we round (which we should do anyway):

@show round(compute_mean(random_vect_demean); digits=1); 1

1 The round(y; digits=n) function rounds y to n digits after the decimal place, defaulting
to n=0 (which rounds to the nearest integer, though printing a decimal due to the type
of the variable).

round(compute_mean(random_vect_demean); digits = 1) = 0.0

1As a reminder, broadcasting involves applying a function element-wise. If we just tried to subtract
random_vect - rand_mean, Julia would throw an error because it doesn’t know if it should try element-
wise subtraction or if we made a mistake in trying to subtract a scalar from a vector, and Julia’s design is
to err on the side of throwing an error unless we specifically say that we want an element-wise operation
through broadcasting.

6

Problem 4 (20 points)

These equations will be derived in terms of 𝑋1 (the land disposal amount, in kg/day) and 𝑋2
(the chemically treated amount, in kg/day), where 𝑋1 +𝑋2 ≤ 100 kg/day. Note that we don’t
need to explicitly represent the amount of directly disposed YUK, as this is 100 − 𝑋1 − 𝑋2
and so is not a free variable.

A = [0 1 1 1;
0 0 0 1;
0 0 0 1;
0 0 0 0]

names = ["Plant", "Land Treatment", "Chem Treatment", "Pristine Brook"]
modify this dictionary to add labels
edge_labels = Dict((1, 2) => L"X_1", (1,3) => L"X_2", (1, 4) => L"100 - X_1 -

X_2", (2, 4) => L"0.2X_1",(3, 4) => L"0.005X_2^2")↪

shapes=[:hexagon, :rect, :rect, :hexagon]
xpos = [0, -1.5, -0.25, 1]
ypos = [1, 0, 0, -1]

p = graphplot(A, names=names,edgelabel=edge_labels, markersize=0.15,
markershapes=shapes, markercolor=:white, x=xpos, y=ypos)↪

display(p)

7

Figure 1: System diagram of the wastewater treatment options in Problem 4.

The amount of YUK which will be discharged is

𝐷(𝑋1, 𝑋2) = 100 − 𝑋1 − 𝑋2 + 0.2𝑋1 + 0.005𝑋2
2

= 100 − 0.8𝑋1 + (0.005𝑋2 − 1)𝑋2
= 100 − 0.8𝑋1 + 0.005𝑋2

2 − 𝑋2

The cost is
𝐶(𝑋1, 𝑋2) = 𝑋2

1/20 + 1.5𝑋2.

A Julia function for this model could look like:

we will assume that X�, X� are vectors so we can vectorize
the function; hence the use of broadcasting. This makes unpacking
the different outputs easier as each will be returned as a vector.
Note that even though this is vectorized, passing scalar inputs
will still work fine.
function yuk_discharge(X�, X�)

Make sure X� + X� <= 100! Throw an error if not.
if any(X� .+ X� .> 100) 1

8

error("X� + X� must be less than 200")
end
yuk = 100 .- 0.8X� .+ (0.005X� .- 1) .* X� 2

cost = X�.^2/20 .+ 1.5X�
return (yuk, cost)

end

1 Checking for these kinds of errors is useful when there are hard limits on what arguments
can be passed in. This syntax lets you throw an error which says something is going
wrong in the code. In general, Julia style is to try to do a computation and throw an
error if something goes wrong.

2 We use broadcasting here to work on vectors of arguments for efficiency. This is in no way
required.

yuk_discharge (generic function with 1 method)

Now, let’s experiment with different outcomes.2 Some other options include just randomly
sampling values (but be careful of not sampling impossible combinations of 𝑋1 and 𝑋2),
manually searching, or setting up a grid of combinations.

Install and load Distributions.jl
Pkg.add("Distributions") 1

using Distributions

yuk_distribution = Dirichlet(3, 1) 2

Need to scale samples from 0 to 200, not 0 to 1
yuk_samples = 100 * rand(yuk_distribution, 1000)
D, C = yuk_discharge(yuk_samples[1,:], yuk_samples[2, :])

Plot the discharge vs. cost and add a line for the regulatory limit
p = scatter(D, C, markersize=2, label="Treatment Samples") 3

vline!(p, [20], color=:red, label="Regulatory Limit") 4

Label axes
xaxis!(p, "YUK Discharge (kg/day)") 5

For the y-axis label, we need to "escape" the $ by adding a slash
otherwise it interprets that as starting math mode
yaxis!(p, "Treatment Cost (\$/day)")

2We left this intentionally open for you to conceptualize how to generate combinations and to look into different
ways of implementing these in Julia. For a more systematic approach, we can sample combinations from
a Dirichlet distribution, which samples combinations which add up to 1. This will require installing and
loading the Distributions.jl package (we will spend more time working with Distributions.jl later).

9

https://en.wikipedia.org/wiki/Dirichlet_distribution

1 This is how we add new packages that are not in the existing environment and then load
them.

2 The Dirichlet distribution is over combinations of values which add up to 1, which is
what we want for shares of the total YUK discharge. The 3D Dirichlet distribution
with parameters equal to 1 is basically uniform over these combinations. See: https:
//juliastats.org/Distributions.jl/stable/multivariate/#Distributions.Dirichlet.

3 This is a basic scatter plot with a label for the plot elements. If we wanted to turn the
legend off in any plot, use legend=false as an argument.

4 This is how to add a vertical line to a plot with a label. The syntax for a horizontal line is
hline(...). The ! at the end of vline!() is important: this is standard Julia syntax
to distinguish commands which mutate (or change) their input (in this case, the first
argument p, the plot object), as this is not always desirable behavior.

5 This is how to change axis labels. Notice that this also mutates the input plot.

Resolving package versions...
No Changes to `~/Teaching/BEE4750/website/solutions/hw01/Project.toml`
No Changes to `~/Teaching/BEE4750/website/solutions/hw01/Manifest.toml`

Figure 2: Sampled solutions for the wastewater allocation problem in Problem 4, showing
cost vs. YUK concentration. The red line marks the regulatory discharge limit of
20kg/day.

10

https://juliastats.org/Distributions.jl/stable/multivariate/#Distributions.Dirichlet
https://juliastats.org/Distributions.jl/stable/multivariate/#Distributions.Dirichlet

We can see that there are a few treatment strategies which comply with the limit, but they
are fairly expensive. This is an example of a tradeoff between two objectives3, where one has
to make a choice between what objectives to prioritize. But one thing to note is that just
choosing an expensive strategy does not guarantee compliance.

Problem 5 (10 points)

Problem 5.1

Here is one solution: Julia includes a function iseven() which returns 1 if the argument is
even and 0 if it is odd. So we can use a comprehension to evaluate !iseven(x) (the ! is
Boolean negation) over the range 0:149, which will return a vector of 1s and 0s, and then add
up the vector to get the count of odd numbers. Another approach could be to use the isodd()
function directly.

odd_count = sum([!iseven(x) for x in 0:149])

75

Problem 5.2

function polynomial(x, a)
p = 0 # initialize value of polynomial
for i in eachindex(a) 1

p += a[i] * x^(i-1) 2

end
return p

end

a = [1, 0, -1, 2]
x = 2
@show polynomial(x, a); 3

1 for i in eachindex(a) is the same thing as for i = 1:length(a) (iterating over the
indices of a) but is preferred in Julia to provide more flexibility with how the array a is
indexed, such as for multidimensional arrays. There is also for b in a which iterates
over the values in a rather than the indices, and for (i, b) in pairs(a) which iterates
over both the indices and values without requiring the line b = a[i].

2 Julia indexing starts at 1, so i=1 corresponds to the constant term, or a power of 0.

3More on this later in the semester!

11

3 The @show macro formats the output of the command nicely and prints it; the semi-colon
at the end suppresses the normal output of the notebook cell, which is printed by default
without the semi-colon.

polynomial(x, a) = 13

12

	Overview
	Problems (Total: 50/60 Points)
	Problem 1 (15 points)
	Problem 2 (5 points)
	Problem 3 (10 points)
	Problem 4 (20 points)
	Problem 5 (10 points)

