
Homework 4 Solutions

2024-11-03

Due Date

Thursday, 11/07/23, 9:00pm

Overview

Load Environment

The following code loads the environment and makes sure all needed packages are installed.
This should be at the start of most Julia scripts.

import Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()

using JuMP
using HiGHS
using DataFrames
using Plots
using Measures
using CSV
using MarkdownTables

Problems (Total: 50/60 Points)

Problem 1 (20 points)

The first step in formulating the optimization problem is to identify the decision variables. A
straightforward set of variables are 𝑆𝑖, 𝐶𝑖, and 𝑊𝑖, where these are the hectares of soybeans,

1

corn, and wheat treated with pesticide rate 𝑖 = 0, 1, 2 kg/ha.

Alternative Variable Specifications

We could also combine these crop variables into a single matrix variable 𝐴𝑗𝑖, where 𝑗
is an index for the crop. This would let us specify all of the objectives and constraints
using matrix notation, but may make the problem harder to read and debug. The final
problem will be equivalent but the writeup may look slightly different.

Next, let’s formulate the optimization problem. The goal is to maximize profit, so we want to
calculate the profit associated with any given planting and pesticide strategy.

The profit from producing soybeans is

𝑟𝑒𝑣𝑒𝑛𝑢𝑒
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0.36 (2900𝑆0 + 3800𝑆1 + 4400𝑆2) −

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡
⏞⏞⏞⏞⏞⏞⏞⏞⏞350 (𝑆0 + 𝑆1 + 𝑆2) −

𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒𝑐𝑜𝑠𝑡
⏞⏞⏞⏞⏞70 (𝑆1 + 2𝑆2)

= (1044 − 350)𝑆0 + (1368 − 350 − 70)𝑆1 + (1584 − 350 − 140)𝑆2
= 694𝑆0 + 948𝑆1 + 1094𝑆2.

Similarly, the profit from producing wheat is

665𝑊0 + 757𝑊1 + 714𝑊2

and from corn
908𝐶0 + 1014𝐶1 + 1208𝐶2.

So the overall objective is

max
𝑆𝑖,𝑊𝑖,𝐶𝑖

694𝑆0 + 948𝑆1 + 1094𝑆2 + 665𝑊0 + 757𝑊1 + 714𝑊2 + 908𝐶0 + 1014𝐶1 + 1208𝐶2.

For constraints, we have the non-negativity constraints

𝑆𝑖, 𝑊𝑖, 𝐶𝑖 ≥ 0.

The total planted area cannot exceed 130 ha, so

𝑆0 + 𝑆1 + 𝑆2 + 𝐶0 + 𝐶1 + 𝐶2 + 𝑊0 + 𝑊1 + 𝑊2 ≤ 130.

We would also get no revenue from producing more than 250,000 kg of any crop, so we will
add that in as a set of constraints:

2900𝑆0 + 3800𝑆1 + 4400𝑆2 ≤ 250000
3500𝑊0 + 4100𝑊1 + 4200𝑊2 ≤ 250000

5900𝐶0 + 6700𝐶1 + 7900𝐶2 ≤ 250000.

2

Finally, we have the pesticide application constraints. These are a little tricky because the
most direct way of writing them down does not result in a linear constraint, so we will need
to do some algebra. Let’s illustrate this with the soybean constraint. The average application
rate cannot exceed 0.8 kg/ha, which means

𝑆1 + 2𝑆2
𝑆0 + 𝑆1 + 𝑆2

≤ 0.8.

As noted, this is not linear, but we can turn it into a linear constraint by multiplying through
by 𝑆0 + 𝑆1 + 𝑆2 and moving everything over to the left-hand side. This yields

−0.8𝑆0 + 0.2𝑆1 + 1.2𝑆2 ≤ 0.

Similarly, the wheat and corn constraints are, respectively,

−0.7𝑊0 + 0.3𝑊1 + 1.3𝑊2 ≤ 0
−0.6𝐶0 + 0.4𝐶1 + 1.4𝐶2 ≤ 0.

Now let’s implement this program in JuMP. We will use matrix-vector notation for our imple-
mentation, but you could also write out the constraints one variable at a time as well; the
disadvantage of this is that it does not scale well as the number of variables increases.

crop_model = Model(HiGHS.Optimizer)
@variable(crop_model, S[1:3] >= 0) 1

@variable(crop_model, W[1:3] >= 0)
@variable(crop_model, C[1:3] >= 0)
@objective(crop_model, Max, [694; 948; 1094]' * S + [665; 757; 714]' * W +

[908; 1014; 1208]' * C) # <2>↪

@constraint(crop_model, land, sum(S) + sum(W) + sum(C) <= 130)
@constraint(crop_model, soy_demand, [2900; 3800; 4400]' * S <= 250_000)
@constraint(crop_model, wheat_demand, [3500; 4100; 4200]' * W <= 250_000)
@constraint(crop_model, corn_demand, [5900; 6700; 7900]' * C <= 250_000)
@constraint(crop_model, soy_pesticide, [-0.8; 0.2; 1.2]' * S <= 0)
@constraint(crop_model, wheat_pesticide, [-0.7; 0.3; 1.3]' * W <= 0)
@constraint(crop_model, corn_pesticide, [-0.6; 0.4; 1.4]' * C <= 0)
print(crop_model) 3

1 Even though we defined the indices 𝑖 to start at 0, Julia’s indexing starts at 1, so we will
need to bear that in mind when we formulate the problem and interpret the solution.

2 When using matrix-vector syntax, be careful about the dimensions and making sure they
match; any mistakes should come out as you formulate the model and print it out, but
may be hard to tell if the problem is sufficiently large. You could also directly compute
the dot product with syntax like sum([694; 948; 1094] .* S).

3

3 I would always print your model just to make sure there are no obvious typos. I made
one while writing up the solution and printing the model let me see it!

Max 694 S[1] + 948 S[2] + 1094 S[3] + 665 W[1] + 757 W[2] + 714 W[3] + 908 C[1] + 1014 C[2] + 1208 C[3]
Subject to
land : S[1] + S[2] + S[3] + W[1] + W[2] + W[3] + C[1] + C[2] + C[3] � 130
soy_demand : 2900 S[1] + 3800 S[2] + 4400 S[3] � 250000
wheat_demand : 3500 W[1] + 4100 W[2] + 4200 W[3] � 250000
corn_demand : 5900 C[1] + 6700 C[2] + 7900 C[3] � 250000
soy_pesticide : -0.8 S[1] + 0.2 S[2] + 1.2 S[3] � 0
wheat_pesticide : -0.7 W[1] + 0.3 W[2] + 1.3 W[3] � 0
corn_pesticide : -0.6 C[1] + 0.4 C[2] + 1.4 C[3] � 0
S[1] � 0
S[2] � 0
S[3] � 0
W[1] � 0
W[2] � 0
W[3] � 0
C[1] � 0
C[2] � 0
C[3] � 0

Now, let’s find the solution.

optimize!(crop_model)

Running HiGHS 1.7.2 (git hash: 5ce7a2753): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
Matrix [2e-01, 8e+03]
Cost [7e+02, 1e+03]
Bound [0e+00, 0e+00]
RHS [1e+02, 2e+05]

Presolving model
7 rows, 9 cols, 27 nonzeros 0s
7 rows, 9 cols, 27 nonzeros 0s
Presolve : Reductions: rows 7(-0); columns 9(-0); elements 27(-0) - Not reduced
Problem not reduced by presolve: solving the LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 -1.8170297740e+02 Ph1: 7(28.3601); Du: 9(181.703) 0s
7 1.1674116702e+05 Pr: 0(0) 0s

4

Model status : Optimal
Simplex iterations: 7
Objective value : 1.1674116702e+05
HiGHS run time : 0.00

We found a solution, which is a good sign that we didn’t mis-specify our constraints (which
can result in an unbounded problem, which would throw an error). The optimal planting and
pesticide strategy is then:

@show value.(S);
@show value.(W);
@show value.(C);

value.(S) = [13.812154696132604, 55.24861878453038, 0.0]
value.(W) = [6.7433064173395625, 15.734381640458977, 0.0]
value.(C) = [26.92307692307692, 0.0, 11.538461538461547]

Summarizing in a table:

Pesticide Rate
(kg/ha) Soy Area (ha) Corn Area (ha) Wheat Area (ha)

0 13.8 6.7 26.9
1 55.2 15.7 0
2 0 0 11.5

The resulting profit is:

@show round(objective_value(crop_model); digits=0);

round(objective_value(crop_model); digits = 0) = 116741.0

To evaluate whether the farmer should buy the land, we can look at the shadow price.

@show shadow_price(land);

shadow_price(land) = 729.4

5

The shadow price is non-zero, so the land constraint is binding and the farmer could make
more money by buying land. Since the amount of land is relatively small, we can take the
shadow price and multiply it by 10 to get an estimate of the value to the farmer of buying the
land, which is approximately $7294.

Does this result make sense? Looking at the other constraints, wheat is the only crop for
which the demand constraint isn’t binding, so any additional land would have to be used to
grow wheat. From the solution, it seems clear that there is no point in increasing 𝑊2, as wheat
treated with two kg/ha of pesticide is less profitable than wheat treated with one, and the
additional pesticide would limit the amount we could grow. As the wheat pesticide constraint
is already binding, to stay in compliance we would need to allocate no more than 7 ha to 𝑊1
and 3 ha to 𝑊0 based on the constraint. And then if we plug those values into the wheat profit
equation that went into our objective, $757 × 7 + $665 × 3 = $7294, which is the same as the
additional profit we estimated using the shadow price.

Problem 2 (30 points)

First, let’s load the data for demand, the generators, and renewable variability.

load the data, pull Zone C, and reformat the DataFrame
NY_demand = DataFrame(CSV.File("data/2013_hourly_load_NY.csv")) 1

rename!(NY_demand, :"Time Stamp" => :Date)
demand = NY_demand[:, [:Date, :C]]
rename!(demand, :C => :Demand)
demand[:, :Hour] = 1:nrow(demand)

generator data
gens = DataFrame(CSV.File("data/generators.csv"))

load capacify factors into a DataFrame
cap_factor = DataFrame(CSV.File("data/wind_solar_capacity_factors.csv"))

1 We load these tabular files into a DataFrame to improve our ability to manipulate them.

6

Hour Wind Solar
Int64 Float64 Float64

1 1 0.0456225 0.0
2 2 0.0908019 0.0
3 3 0.177524 0.0
4 4 0.196106 0.0
5 5 0.163481 0.0
6 6 0.129312 0.0
7 7 0.131448 0.0
8 8 0.162792 0.0
9 9 0.341911 0.115556

10 10 0.222848 0.530593
11 11 0.030222 0.747114
12 12 0.0143295 0.874793
13 13 0.0377381 0.94319
14 14 0.0552232 0.962
15 15 0.00819863 0.948126
16 16 0.000661809 0.852887
17 17 0.00255233 0.687016
18 18 0.0296442 0.440206
19 19 0.0534046 0.0
20 20 0.276383 0.0
21 21 0.296339 0.0
22 22 0.278992 0.0
23 23 0.28697 0.0
24 24 0.331498 0.0
… … … …

From lecture, the decision variables for a “greenfield” capacity expansion are:

• 𝑥𝑔: capacity installed (MW) for generator type 𝑔;
• 𝑦𝑔,𝑡: generated power (MWh) by generator type 𝑔 in hour 𝑡;
• 𝑁𝑆𝐸𝑡: non-served demand (MWh) in hour 𝑡.

The optimization problem is:

7

min
𝑥,𝑦,𝑁𝑆𝐸

∑
𝑔∈𝒢

FixedCost𝑔 × 𝑥𝑔 + ∑
𝑡∈𝒯

∑
𝑔∈𝒢

VarCost𝑔 × 𝑦𝑔,𝑡

+ ∑
𝑡∈𝒯

NSECost × 𝑁𝑆𝐸𝑡

subject to: ∑
𝑔∈𝒢

𝑦𝑔,𝑡 + 𝑁𝑆𝐸𝑡 ≥ 𝑑𝑡 ∀𝑡 ∈ 𝒯

𝑦𝑔,𝑡 ≤ 𝑥𝑔 × 𝑐𝑔,𝑡 ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝒯

𝑥𝑔, 𝑦𝑔,𝑡, 𝑁𝑆𝐸𝑡 ≥ 0 ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝒯,

where 𝑑𝑡 is the demand in hour 𝑡, and 𝑐𝑔,𝑡 is the capacity factor in hour 𝑡 for generator class
𝑔.

To put this into JuMP, the our first task is to decide how we want to handle the difference
between the renewable generating technologies (which have time-varying capacity factors) and
the thermal technologies (which have constant capacity factors). We can either create a joint
capacity factor DataFrame which we can then use to construct all of our capacity constraints, or
we can create two different capacity constraints, one for renewables and one for non-renewables.
The eventual problem will be the same, but the code would look slightly different. In this
solution, we will do take the former approach to show what it looks like.

To construct a single capacity factor DataFrame:

define sets
G = 1:nrow(gens) 1

T = 1:nrow(demand)

capacity factor matrix
cf_constant = ones(T[end], G[end-2]) 2

set geothermal capacity
cf_constant[:, 1] .= 0.85 3

append wind and solar capacity factors
cf = hcat(cf_constant, cap_factor[!, :Wind], cap_factor[!, :Solar]) 4

1 We need to define these index sets in any case to help set up arrays of constraints (we
don’t, for example, want to define all of the individual demand constraints for every
hour individually).

2 The last two generators in the gens DataFrame are solar and wind, so we want to drop
those as we will replace them with the varying capacity factor data that we loaded. The
end keyword is just syntax to automate looking up the last index, so we can just subtract
values from it.

8

3 We broadcast the = operator to assign element-wise; Julia will throw an error if we try
to assign a scalar to a vector because it doesn’t know if we want to do element-wise
assigning or if this is an error. Requiring broadcasting forces us to be explicit about our
intent.

4 You can use either cap_factor[!, :Wind] or cap_factor[:, :Wind] to refer to a “slice”
of the DataFrame with column name Wind. The difference is that ! does not allocate
a temporary DataFrame, which makes it more memory efficient but also means it can’t
be manipulated. You could also use a column index number instead of the name if you
didn’t have meaningful names or didn’t know what they were.

8760×6 Matrix{Float64}:
0.85 1.0 1.0 1.0 0.0456225 0.0
0.85 1.0 1.0 1.0 0.0908019 0.0
0.85 1.0 1.0 1.0 0.177524 0.0
0.85 1.0 1.0 1.0 0.196106 0.0
0.85 1.0 1.0 1.0 0.163481 0.0
0.85 1.0 1.0 1.0 0.129312 0.0
0.85 1.0 1.0 1.0 0.131448 0.0
0.85 1.0 1.0 1.0 0.162792 0.0
0.85 1.0 1.0 1.0 0.341911 0.115556
0.85 1.0 1.0 1.0 0.222848 0.530593
� �
0.85 1.0 1.0 1.0 0.249119 0.560314
0.85 1.0 1.0 1.0 0.171991 0.445911
0.85 1.0 1.0 1.0 0.234215 0.232936
0.85 1.0 1.0 1.0 0.32073 0.0
0.85 1.0 1.0 1.0 0.166379 0.0
0.85 1.0 1.0 1.0 0.252252 0.0
0.85 1.0 1.0 1.0 0.276054 0.0
0.85 1.0 1.0 1.0 0.111131 0.0
0.85 1.0 1.0 1.0 0.208158 0.0

Now we can implement our model.

define NSECost
NSECost = 10_000

set up model object
gencap = Model(HiGHS.Optimizer) # use the HiGHS LP solver

define variables
@variable(gencap, x[g in G] >= 0) # installed capacity

9

@variable(gencap, y[g in G, t in T] >= 0) # generated power
@variable(gencap, nse[t in T] >= 0) # unserved energy

define objective: minimize sum of fixed costs, variable costs of
generation,↪

and non-served energy penalty
@objective(gencap, Min, sum(gens[!, :FixedCost] .* x) +

sum(gens[!, :VarCost] .* [sum(y[g, :]) for g in G]) +
NSECost * sum(nse))

define constraints
@constraint(gencap, capacity[g in G, t in T], y[g, t] <= x[g] * cf[t, g]) #

capacity constraint↪

@constraint(gencap, demand_met[t in T], sum(y[:, t]) + nse[t] >=
demand.Demand[t]) # demand constraint↪

print(gencap) 1

1 Notice that here we’ve hit the limit of what we can read directly from the model printing,
but hopefully it gives us an idea of how everything looks.

Min 450000 x[1] + 220000 x[2] + 82000 x[3] + 65000 x[4] + 91000 x[5] + 70000 x[6] + 24 y[2,1] + 24 y[2,2] + 24 y[2,3] + 24 y[2,4] + 24 y[2,5] + 24 y[2,6] + 24 y[2,7] + 24 y[2,8] + 24 y[2,9] + 24 y[2,10] + 24 y[2,11] + 24 y[2,12] + 24 y[2,13] + 24 y[2,14] + 24 y[2,15] + 24 y[2,16] + 24 y[2,17] + 24 y[2,18] + 24 y[2,19] + 24 y[2,20] + 24 y[2,21] + 24 y[2,22] + 24 y[2,23] + 24 y[2,24] + [[...34986 terms omitted...]] + 10000 nse[8731] + 10000 nse[8732] + 10000 nse[8733] + 10000 nse[8734] + 10000 nse[8735] + 10000 nse[8736] + 10000 nse[8737] + 10000 nse[8738] + 10000 nse[8739] + 10000 nse[8740] + 10000 nse[8741] + 10000 nse[8742] + 10000 nse[8743] + 10000 nse[8744] + 10000 nse[8745] + 10000 nse[8746] + 10000 nse[8747] + 10000 nse[8748] + 10000 nse[8749] + 10000 nse[8750] + 10000 nse[8751] + 10000 nse[8752] + 10000 nse[8753] + 10000 nse[8754] + 10000 nse[8755] + 10000 nse[8756] + 10000 nse[8757] + 10000 nse[8758] + 10000 nse[8759] + 10000 nse[8760]
Subject to
demand_met[1] : y[1,1] + y[2,1] + y[3,1] + y[4,1] + y[5,1] + y[6,1] + nse[1] � 1678.3
demand_met[2] : y[1,2] + y[2,2] + y[3,2] + y[4,2] + y[5,2] + y[6,2] + nse[2] � 1596.7
demand_met[3] : y[1,3] + y[2,3] + y[3,3] + y[4,3] + y[5,3] + y[6,3] + nse[3] � 1522.8
demand_met[4] : y[1,4] + y[2,4] + y[3,4] + y[4,4] + y[5,4] + y[6,4] + nse[4] � 1497.7
demand_met[5] : y[1,5] + y[2,5] + y[3,5] + y[4,5] + y[5,5] + y[6,5] + nse[5] � 1507.8
demand_met[6] : y[1,6] + y[2,6] + y[3,6] + y[4,6] + y[5,6] + y[6,6] + nse[6] � 1540.2
demand_met[7] : y[1,7] + y[2,7] + y[3,7] + y[4,7] + y[5,7] + y[6,7] + nse[7] � 1591.2
demand_met[8] : y[1,8] + y[2,8] + y[3,8] + y[4,8] + y[5,8] + y[6,8] + nse[8] � 1657.3
demand_met[9] : y[1,9] + y[2,9] + y[3,9] + y[4,9] + y[5,9] + y[6,9] + nse[9] � 1677.1
demand_met[10] : y[1,10] + y[2,10] + y[3,10] + y[4,10] + y[5,10] + y[6,10] + nse[10] � 1809.6
demand_met[11] : y[1,11] + y[2,11] + y[3,11] + y[4,11] + y[5,11] + y[6,11] + nse[11] � 1895.5
demand_met[12] : y[1,12] + y[2,12] + y[3,12] + y[4,12] + y[5,12] + y[6,12] + nse[12] � 1944.6
demand_met[13] : y[1,13] + y[2,13] + y[3,13] + y[4,13] + y[5,13] + y[6,13] + nse[13] � 1959.4
demand_met[14] : y[1,14] + y[2,14] + y[3,14] + y[4,14] + y[5,14] + y[6,14] + nse[14] � 1949.8
demand_met[15] : y[1,15] + y[2,15] + y[3,15] + y[4,15] + y[5,15] + y[6,15] + nse[15] � 1937.2
demand_met[16] : y[1,16] + y[2,16] + y[3,16] + y[4,16] + y[5,16] + y[6,16] + nse[16] � 1952
demand_met[17] : y[1,17] + y[2,17] + y[3,17] + y[4,17] + y[5,17] + y[6,17] + nse[17] � 2061.4
demand_met[18] : y[1,18] + y[2,18] + y[3,18] + y[4,18] + y[5,18] + y[6,18] + nse[18] � 2256.4
demand_met[19] : y[1,19] + y[2,19] + y[3,19] + y[4,19] + y[5,19] + y[6,19] + nse[19] � 2273.7
demand_met[20] : y[1,20] + y[2,20] + y[3,20] + y[4,20] + y[5,20] + y[6,20] + nse[20] � 2251.9

10

demand_met[21] : y[1,21] + y[2,21] + y[3,21] + y[4,21] + y[5,21] + y[6,21] + nse[21] � 2176.5
demand_met[22] : y[1,22] + y[2,22] + y[3,22] + y[4,22] + y[5,22] + y[6,22] + nse[22] � 2038.5
demand_met[23] : y[1,23] + y[2,23] + y[3,23] + y[4,23] + y[5,23] + y[6,23] + nse[23] � 1908.9
demand_met[24] : y[1,24] + y[2,24] + y[3,24] + y[4,24] + y[5,24] + y[6,24] + nse[24] � 1800.1
demand_met[25] : y[1,25] + y[2,25] + y[3,25] + y[4,25] + y[5,25] + y[6,25] + nse[25] � 1742.2
demand_met[26] : y[1,26] + y[2,26] + y[3,26] + y[4,26] + y[5,26] + y[6,26] + nse[26] � 1711.9
demand_met[27] : y[1,27] + y[2,27] + y[3,27] + y[4,27] + y[5,27] + y[6,27] + nse[27] � 1665.7
demand_met[28] : y[1,28] + y[2,28] + y[3,28] + y[4,28] + y[5,28] + y[6,28] + nse[28] � 1690.1
demand_met[29] : y[1,29] + y[2,29] + y[3,29] + y[4,29] + y[5,29] + y[6,29] + nse[29] � 1741.1
demand_met[30] : y[1,30] + y[2,30] + y[3,30] + y[4,30] + y[5,30] + y[6,30] + nse[30] � 1864
demand_met[31] : y[1,31] + y[2,31] + y[3,31] + y[4,31] + y[5,31] + y[6,31] + nse[31] � 2115.1
demand_met[32] : y[1,32] + y[2,32] + y[3,32] + y[4,32] + y[5,32] + y[6,32] + nse[32] � 2253.2
demand_met[33] : y[1,33] + y[2,33] + y[3,33] + y[4,33] + y[5,33] + y[6,33] + nse[33] � 2279
demand_met[34] : y[1,34] + y[2,34] + y[3,34] + y[4,34] + y[5,34] + y[6,34] + nse[34] � 2287.7
demand_met[35] : y[1,35] + y[2,35] + y[3,35] + y[4,35] + y[5,35] + y[6,35] + nse[35] � 2294.8
demand_met[36] : y[1,36] + y[2,36] + y[3,36] + y[4,36] + y[5,36] + y[6,36] + nse[36] � 2298.5
demand_met[37] : y[1,37] + y[2,37] + y[3,37] + y[4,37] + y[5,37] + y[6,37] + nse[37] � 2256.7
demand_met[38] : y[1,38] + y[2,38] + y[3,38] + y[4,38] + y[5,38] + y[6,38] + nse[38] � 2243.1
demand_met[39] : y[1,39] + y[2,39] + y[3,39] + y[4,39] + y[5,39] + y[6,39] + nse[39] � 2225.4
demand_met[40] : y[1,40] + y[2,40] + y[3,40] + y[4,40] + y[5,40] + y[6,40] + nse[40] � 2231.1
demand_met[41] : y[1,41] + y[2,41] + y[3,41] + y[4,41] + y[5,41] + y[6,41] + nse[41] � 2314.8
demand_met[42] : y[1,42] + y[2,42] + y[3,42] + y[4,42] + y[5,42] + y[6,42] + nse[42] � 2485.7
demand_met[43] : y[1,43] + y[2,43] + y[3,43] + y[4,43] + y[5,43] + y[6,43] + nse[43] � 2496.4
demand_met[44] : y[1,44] + y[2,44] + y[3,44] + y[4,44] + y[5,44] + y[6,44] + nse[44] � 2464.4
demand_met[45] : y[1,45] + y[2,45] + y[3,45] + y[4,45] + y[5,45] + y[6,45] + nse[45] � 2404.2
demand_met[46] : y[1,46] + y[2,46] + y[3,46] + y[4,46] + y[5,46] + y[6,46] + nse[46] � 2273.9
demand_met[47] : y[1,47] + y[2,47] + y[3,47] + y[4,47] + y[5,47] + y[6,47] + nse[47] � 2111.4
demand_met[48] : y[1,48] + y[2,48] + y[3,48] + y[4,48] + y[5,48] + y[6,48] + nse[48] � 1974.8
demand_met[49] : y[1,49] + y[2,49] + y[3,49] + y[4,49] + y[5,49] + y[6,49] + nse[49] � 1882.9
demand_met[50] : y[1,50] + y[2,50] + y[3,50] + y[4,50] + y[5,50] + y[6,50] + nse[50] � 1835.7
[[...122546 constraints skipped...]]
nse[8711] � 0
nse[8712] � 0
nse[8713] � 0
nse[8714] � 0
nse[8715] � 0
nse[8716] � 0
nse[8717] � 0
nse[8718] � 0
nse[8719] � 0
nse[8720] � 0
nse[8721] � 0
nse[8722] � 0

11

nse[8723] � 0
nse[8724] � 0
nse[8725] � 0
nse[8726] � 0
nse[8727] � 0
nse[8728] � 0
nse[8729] � 0
nse[8730] � 0
nse[8731] � 0
nse[8732] � 0
nse[8733] � 0
nse[8734] � 0
nse[8735] � 0
nse[8736] � 0
nse[8737] � 0
nse[8738] � 0
nse[8739] � 0
nse[8740] � 0
nse[8741] � 0
nse[8742] � 0
nse[8743] � 0
nse[8744] � 0
nse[8745] � 0
nse[8746] � 0
nse[8747] � 0
nse[8748] � 0
nse[8749] � 0
nse[8750] � 0
nse[8751] � 0
nse[8752] � 0
nse[8753] � 0
nse[8754] � 0
nse[8755] � 0
nse[8756] � 0
nse[8757] � 0
nse[8758] � 0
nse[8759] � 0
nse[8760] � 0

Now we optimize.

12

optimize!(gencap)

Running HiGHS 1.7.2 (git hash: 5ce7a2753): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
Matrix [5e-05, 1e+00]
Cost [2e+01, 4e+05]
Bound [0e+00, 0e+00]
RHS [1e+03, 3e+03]

Presolving model
56856 rows, 56862 cols, 153048 nonzeros 0s
56853 rows, 56859 cols, 153042 nonzeros 0s
Presolve : Reductions: rows 56853(-4467); columns 56859(-4467); elements 153042(-8934)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 0.0000000000e+00 Pr: 8760(4.1747e+06) 0s
42008 6.5458487038e+08 Pr: 0(0); Du: 0(2.80224e-10) 2s

Solving the original LP from the solution after postsolve
Model status : Optimal
Simplex iterations: 42008
Objective value : 6.5458487038e+08
HiGHS run time : 1.88

We can find how much generating capacity we want to build for each plant type by querying
the relevant decision variable x. We will turn this into a DataFrame to make the presentation
easier.

built_cap = value.(x).data
DataFrame(Plant=gens.Plant, Capacity=round.(built_cap; digits=0))

Plant Capacity
String15 Float64

1 Geothermal -0.0
2 Coal 0.0
3 NG CCGT 1658.0
4 NG CT 880.0
5 Wind 485.0
6 Solar 1958.0

Similarly, we can find the total amount of non-served energy by adding up nse[t].

13

@show sum(value.(nse).data);

sum(value.(nse).data) = 256.83377442738583

So this plan results in 257 MWh of non-served energy throughout the year.

Finally, to get the total cost of the system we use objective_value:

@show objective_value(gencap);

objective_value(gencap) = 6.545848703815409e8

So the cost of operating this system (fixed and variable costs) for a year is $6.5e8.

Next, to find the total annual generation from each plant, we want to sum up the values of
the variable y along the time dimension.

annual_gen = [sum(value.(y[g, :]).data) for g in G]

6-element Vector{Float64}:
0.0
0.0
8.65664708400426e6

449375.8891095482
1.4272043521322047e6
5.83442174097956e6

Notice that this means that the cost of the system per MWh generated is $40/MWh.

We can then convert this into fractions of total generation, which we can compare to fractions
of built capacity.

annual_gen_frac = annual_gen ./ sum(annual_gen)
built_frac = built_cap ./ sum(built_cap)
DataFrame(Plant=gens[!, :Plant], Built_Perc=100 * round.(built_frac;

digits=2), Generated_Perc=100 * round.(annual_gen_frac; digits=2))↪

14

Plant Built_Perc Generated_Perc
String15 Float64 Float64

1 Geothermal -0.0 0.0
2 Coal 0.0 0.0
3 NG CCGT 33.0 53.0
4 NG CT 18.0 3.0
5 Wind 10.0 9.0
6 Solar 39.0 36.0

One observation is that that we have to overbuild the fraction of combustion turbine gas plants
(NG CT) relative to the fraction of times in which they are used, as these are needed when
wind and solar is low, but otherwise are less commonly used. We also have to slightly overbuild
wind and solar relative to the power generated by these technologies, as although they are free
to generate, they can be severely constrained in terms of capacity in a given hour.

Finally, to plot the electricity price for each hour, we can look at the absolute value of the
shadow prices for the demand constraints (absolute value since the shadow prices are nega-
tive, as “relaxing” the demand constraint by reducing the demand by one MWh reduces the
objective).

elec_price = abs.(shadow_price.(demand_met).data)
p = plot(demand.Hour, elec_price, xlabel="Hour of Year", ylabel="Electricity

Price (\$/MWh)", label=:false)↪

15

Figure 1: Price of electricity for each hour in the year.

Notice that the prices in Figure 1 go up to $10,000/MWh, as these are the hours in which
energy is non-served. Let’s restrict the y limits in this plot to see any other trends.

ylims!(p, (-5, 50))

16

Figure 2: Price of electricity for each hour in the year.

Figure 2 shows that the price can vary between $0/MWh and between $30-40/MWh, which
depends on whether we can meet demand entirely due to renewable generation or when we
need to rely on natural gas.

Problem 3 (10 points)

This problem is only required for students in BEE 5750.

The NY state legislature is considering enacting an annual CO2 limit, which for the utility
would limit the emissions in its footprint to 1.5 MtCO2/yr.

In this problem:

• What would the value to the utility be of allowing it to emit an additional 1000 tCO2/yr?
An additional 5000?

The only change needed to the LP from Problem 2 is to add in a constraint for the CO2
limit. Let 𝑒𝑚𝑖𝑠𝑔 be the CO2 emissions factor (tCO2/MWh generated) for plant 𝑔. Then this
constraint is:

∑
𝑔∈𝐺

𝑒𝑚𝑖𝑠𝑔 × ∑
𝑡∈𝑇

𝑦𝑔,𝑡 ≤ 1, 500, 000.

17

Instead of creating a whole new model, we can actually just add a new constraint to the
JuMP model (just be careful when evaluating the notebook cells to not jump back to Problem
2 without re-evaluating everything!), but if you re-formulated the model object with a new
name, that works as well.

add in the new constraint
@constraint(gencap, co2, sum(gens[:, :Emissions] .* [sum(y[g, :]) for g in

G]) <= 1500000);↪

Finding the new solution:

optimize!(gencap)
built_cap_co2 = value.(x).data
DataFrame(Plant=gens.Plant, New_Capacity=round.(built_cap_co2; digits=0),

Old_Capacity=round.(built_cap; digits=0))↪

Coefficient ranges:
Matrix [5e-05, 1e+00]
Cost [2e+01, 4e+05]
Bound [0e+00, 0e+00]
RHS [1e+03, 2e+06]

Solving LP without presolve, or with basis, or unconstrained
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 6.5458538900e+08 Pr: 1(617379); Du: 0(2.11155e-06) 0s
3982 6.7522866671e+08 Pr: 1049(2.50139e+06); Du: 0(4.44609e-06) 5s
8548 6.8112749404e+08 Pr: 6553(2.63109e+06); Du: 0(4.62437e-06) 10s
12316 7.0641506462e+08 Pr: 721(4.11196e+06); Du: 0(5.48107e-06) 15s
15989 7.4200754019e+08 Pr: 9334(2.97015e+07); Du: 0(8.30066e-06) 20s
20970 7.8473854135e+08 Pr: 2405(35057.8); Du: 0(9.37279e-06) 26s
22000 7.8535295894e+08 Pr: 0(0); Du: 0(8.52409e-11) 27s

Model status : Optimal
Simplex iterations: 22000
Objective value : 7.8535295894e+08
HiGHS run time : 26.87

18

Plant New_Capacity Old_Capacity
String15 Float64 Float64

1 Geothermal 286.0 -0.0
2 Coal 0.0 0.0
3 NG CCGT 1509.0 1658.0
4 NG CT 703.0 880.0
5 Wind 2549.0 485.0
6 Solar 2104.0 1958.0

To meet the emissions constraint, we build a reduced amount of natural gas, which creates
some interesting changes in the rest of the mix. This natural gas capacity is replaced by a
combination of 286 MW of geothermal (which was previously zero), an additional 2100 MW of
wind capacity, and 150 MW of solar. These massive increases in wind are required to ensure
adequate generation when solar is low, since we can no longer rely on as much gas generation
for that purpose.

To find the value to the utility of relaxing the CO2 constraint, we can use the shadow price:

@show shadow_price(co2);

shadow_price(co2) = -182.77193609185798

Thus, every tCO2 we allow will be worth $183, so allowing an extra 1,000 tCO2 will be worth
$183000 and allowing an extra 5,000 tCO2 $915000.

19

	Overview
	Load Environment

	Problems (Total: 50/60 Points)
	Problem 1 (20 points)
	Problem 2 (30 points)
	Problem 3 (10 points)

