
Lab 2 Solutions

Due Date

Wednesday, 9/25/24, 9:00pm

Setup

The following code should go at the top of most Julia scripts; it will load the local package
environment and install any needed packages. You will see this often and shouldn’t need to
touch it.

import Pkg
Pkg.activate(".")
Pkg.instantiate()

using Random # random number generation
using Distributions # probability distributions and interface
using Statistics # basic statistical functions, including mean
using Plots # plotting

Exercise (3 Points)

First, let’s write a function which compares our bid to (random) showcase value and returns
the reward. The only slight complication is calculating the probability of winning if we don’t
automatically win both showcases and don’t overbid. Our assumption is that this is linear,
with a win probability of zero when we bid $0 and a win probability of one if we bid exactly.
So, using the equation of a line between these two points, if our bid is 𝑏 and the true value is
𝑣, the probability becomes

ℙ(𝑣 − 𝑏) = 1 − 𝑣 − 𝑏
𝑣

1

and the expected value of our winnings in this case is ℙ(𝑣 − 𝑏) × 𝑣 = 𝑏.

function showcase_play(value; bid=35_000) 1

if bid > value # overbird, win nothing
return 0

elseif value - bid < 250 # win both showcases
return 2 * value

else
win_prob = (1 + (bid - value) / value)
return bid

end
end

1 The semi-colon and assigned value makes bid an optional parameter: if we don’t ex-
plicitly pass it, it will take on that assumed value, but we can change it by calling
showcase_play(value; bid=x).

showcase_play (generic function with 1 method)

Now we can conduct our Monte Carlo experiment. Let’s write another function which takes
in a vector of showcase values and computes the running average of winnings.

function showcase_mc(values)
exp_winnings = zeros(length(values)) 1

for (i, value) in pairs(values) 2

if i == 1
exp_winnings[i] = showcase_play(value)

else
exp_winnings[i] = ((i - 1) * exp_winnings[i - 1] +

showcase_play(value)) / i 3↪

end
end
return exp_winnings

end

1 This initializes the storage for a vector which will store the running average for every
iteration.

2 pairs(v) returns an iterator over tuples containing both the index and the value of each
element of v. This is safer than for i = 1:length(v) for a larger variety of data
structures and avoids having to explicitly look up value = v[i]. If we didn’t need the
index, we could have used for value in values, but we want to be to write to the
right index in exp_winnings.

2

3 We could just compute the average each time over the entire chunk of the vector, but this is
a little faster for cases where the evaluation is more expensive as we avoid re-computing.

showcase_mc (generic function with 1 method)

Now if we draw 20,000 samples (this is large for illustrative purposes), we can compute how
the Monte Carlo estimates change (visualized in Figure 1).

Random.seed!(1) 1

showcase_dist = truncated(Normal(31000, 4500), lower=5000, upper=42000)
showcase_samples = rand(showcase_dist, 20_000)

winnings_mc = showcase_mc(showcase_samples)
plot(winnings_mc, xlabel="Monte Carlo Iteration", ylabel="Expected Winnings

(\$)", label=false)↪

1 Setting a seed ensures we’ll get the same samples regardless of when we re-run this notebook.

Figure 1: Monte Carlo estimates of expected winnings for a $35,000 bid over 20,000 showcase
samples.

Based on this, the estimated value is $6999.

3

How could we decide how many samples to use? Later, we’ll see in class how we can compute
a more formal analysis of the error in the Monte Carlo estimate, but for the purposes of this
lab, we would like to ensure that the estimate has stabilized. If we had only used the first
1,000 samples, we would see Figure 2.

plot(winnings_mc[1:1000], xlabel="Monte Carlo Iteration", ylabel="Expected
Winnings (\$)", label=false)↪

Figure 2: Monte Carlo estimates of expected winnings for a $35,000 bid over 1,000 showcase
samples.

We can see that there is still some variability as of the last iteration, so we might want to use
more samples.1 If we use 5,000 samples, we can see the results in Figure 3.

plot(winnings_mc[1:5000], xlabel="Monte Carlo Iteration", ylabel="Expected
Winnings (\$)", label=false)↪

1Note that this variability might be ok depending on the outcomes of the error analysis and our desire for
precision, but more on that soon.

4

Figure 3: Monte Carlo estimates of expected winnings for a $35,000 bid over 5,000 showcase
samples.

This looks much better! So we could have used 5,000, but it will turn out that more will
always be “safer”.

References

Put any consulted sources here, including classmates you worked with/who helped you.

5

	Setup
	Exercise (3 Points)
	References

