MODELING NONSTATIONARITY

BEE 6940 Lecture 10 MarcH 27, 2023
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ReviEw oF EXTREME VALUE MODELS
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Two CoMmMON APPROACHES TO MODELING
EXTREMES

Block Maxima: Peaks Over Thresholds:
e Find maxima for e Set threshold and model
Independent blocks from level of exceedance
time series; conditional on

e Can be inefficient use of exceedance;

data. e Choices of threshold and
declustering length.
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BLock MaXIMA: GENERALIZED EXTREME
V ALUE DISTRIBUTIONS

GEV distributions have three parameters:

e location u;
e scaleo > 0;

e shape &.
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GENERALIZED EXTREME V ALUE

DISTRIBUTIONS

The shape parameter £ is
particularly influential, as
the GEV distribution can
take on three shapes
depending on its sign.
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GEV TvYPEs

e £ > 0: Frechet (heavy- 0.4
tailed)

e £ = 0: Gumbel (light-
tailed)

o £ < 0: Weibull (bounded)
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PeEaks OVER THRESHOLDS: GENERALIZED
PARETO DISTRIBUTIONS

Similarly to the GEV distribution, the GPD distribution has three
parameters:

e location u;
e scaleo > 0;

e shape &.
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GENERALIZED PARETO DisTRIBUTIONS TYPES

e £ > 0: heavy-tailed Loot ——

e £ = 0: light-tailed 05l =i
e £ < 0: bounded 2 050
8 B

oot —— —
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PoissoN-GP PROCESSES

GPD model exceedances over threshold.

Often pair with Poisson processes to model the number of
exceedances in a unit period.
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GEV vs. PP-GP

GEV Model: For each time period, what is the largest event?

PP-GP: For each time period, how many exceedances of
threshold, and how large is each one?
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RETURN LEVELS

m-~-period return level: How large is the expected event which
occurs with this frequency?

Alternative explanation: Exceedance probability of 1 — 1/m.
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NONSTATIONARITY
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CLIMATE CHANGE AND NONSTATIONARITY

However, these models assume no long-term trend in the data,
so no change in the distribution of annual extremes.

This situation is called stationary: the underlying probability
distribution does not change over time.
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CLIMATE CHANGE AND NONSTATIONARITY

But climate change risks are fundamentally about dynamic
distributions!
e Storm tracks/intensities

e Frequencies of extremes (heat waves, droughts, atmospheric
rivers, etc.)

e Correlations between extreme events
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CLIMATE CHANGE AND NONSTATIONARITY

But climate change risks are fundamentally about dynamic
distributions!
e Storm tracks/intensities

e Frequencies of extremes (heat waves, droughts, atmospheric
rivers, etc.)

e Correlations between extreme events

This means that we need to consider nonstationarity: the

statistical model has a dependence on time (explicitly or
implicitly).
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TESTING FOR NONSTATIONARITY

Commonly used: Mann-Kendall Test.

n—1 n

S=> N sgn(y; — v,

i=1 j=i+1

Null hypothesis (zero trend):

2(2
S ~ Normal (O, (2n 5))

In(n —1)
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AsIDE: NuLL-HYPOTHESIS SIGNIFICANCE
TESTS

Mann-Kendall fits into the framework of null-hypothesis
significance tests (NHST).

This aligns with falsificationist scientific paradigm. The test is

whether to reject a null hypothesis in favor of the existence of a
relationship.

e Null hypothesis: Typically that the proposed relationship does
not exist.

e Alternative hypothesis: The relationship does exist. 17 [ 40



AsIDE: NuLL-HYPOTHESIS SIGNIFICANCE
TESTS

For example:

e Null: No effect in a regression model (coefficient is zero)

e Alternative: Effect is non-zero

Or;:

e Null: No trend over time

e Alternative: Trend exists
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STATISTICAL SIGNIFICANCE

The "significance"” in NHST is based on the frequentist notion of
sampling distributions.

Goal: try to identify whether the pattern in your data is strong
enough that it likely did not emerge due to sampling chance.

This involves balancing Type I (false positive) and Type II (false
negative) error rates.
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TYPE | AND TYPE |l ERRORS

Null Hypothesis Is

True

False

Decision About
Null Hypothesis

Type II error (false

D(?n t |True neggtlve negative, probability
reject [(probability 1 — o) 8
Type I Error (false .
. . T t
Reject [positive, probability 'UE POSITIVE

o)

(probability 1 — 3)

The significance level a is the probability of rejecting the null

hypothesis assuming that it is true (Type I errror).
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P-VALUES

The p-value captures the probability of observing results at
least as extreme as observed under the null hypothesis.

Therefore, if a p-value is small (below «), it can mean:

1. The null hypothesis is not true for that data;

2. The null hypothesis is true and the data is an outlying sample.

Notice: the p-value is itself a random variable; it is contingent
on the sample.
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P-VALUES

What a p-value is not:

e Probability that the null hypothesis is true (this is meaningless in
the frequentist paradigm);

e Probability that the effect was produced by chance alone (a p-
value is conditional on the assumption that the null hypothesis is

true)

e An indication of the effect size

These misunderstandings are behind the replication crisis...
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MANN-KENDALL TEST

n—1 n
S = S: S: sgn(y; — v;),

i=1 j=i+1

Null hypothesis (zero trend):

S ~ Normal (O, 2(2n +5) )

In(n —1)
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"PrRoOBLEMS" WITH MANN-KENDALL

However:

e Mann-Kendall only suggests the presence of a trend, not its
magnitude (general problem with statistical significance tests:
what is the effect size?);

e Doesn't work if the trend is oscillating.
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ALTERNATIVE: MODEL SELECTION

We can also fit stationary and non-stationary models and see
how they perform, and select accordingly.

Will discuss fitting today, selection after break.
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MODELING NONSTATIONARITY

Typically assume one (or more parameters) depend on another
variable which can vary in time.

For example, could model block maxima as GEV(u(t), o, &), or
frequency of occurrence as Poisson(A(t)).

Often these are linear or generalized linear models:

u(t) = (Y Bit).
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MODELING NONSTATIONARITY

e While any parameters can be treated as nonstationary,
making models too complex can make them difficult to
constrain given limited extremes data.

e Shape parameters are difficult to constrain normally, so are
often best left constant.
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NONSTATIONARY RETURN LEVELS

Since we have a different model for each time £, we get
different return levels for different times.

Contrast this with the stationary condition, in which we can just
speak of "return levels".
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TiDE GAUGE EXAMPLE

Let's look at the San Francisco tide gauge data.

What are the implications
of:

 Nonstationary GEV?

Mean Water Level

| |—— Detrended Observations

e Nonstationary Poisson
rate?

N %5 %%
'0.\",0 B\ 0

e Nonstationary GPD?
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NoNsTATIONARY BLock MaxiMmA MoODEL

Let's fit a GEV with a linear trend in time: u(t) = Bo + Bit,
where t Is In years.
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NoNsTATIONARY BLock MaximMmA MODEL
FiT
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STATIONARY BLock MaxiMA MoDEL FiIT
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CHoICcE oF MODELS
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PossiBLE COVARIATES

The candidate set of covariates is going to depend on the
application.

For example, for storm surge, changes could be related to:

e sea-surface temperatures

e climate indices (North Atlantic Oscillation, Southern Oscillation)
e local mean sea level

e global mean temperature (as a broad proxy)

e time (general trend) 34 / 40



PACE OF PossiBLE MoDELS Is DIFFICULT TO
ONSTRAIN
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https://doi.org/10.3389/fclim.2022.796479

SpAce oF PossIBLE MoDELS Is DIFFICULT TO
CONSTRAIN
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https://doi.org/10.3389/fclim.2022.796479

Key TAKEAWAYS
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Key TAKEAWAYS

e Nonstationarity: Dynamic changes in the probability distribution

e Can be particularly hard to model/constrain with extremes due
to limited data.

e Wise to avoid changing shape parameters.

e Nonstationary models can have very different return levels, so
there are real implications for risk management.

e One possible path: adaptive decisions based on learning.
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UrcOMING SCHEDULE
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UrcOMING SCHEDULE

Wednesday: Discussion of Read & Vogel (2015).

Monday after break: Model selection
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