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Modeling Nonstationarity
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Review of Extreme Value Models
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Block Maxima:

Find maxima for
independent blocks from
time series;

Can be inefficient use of
data.

Peaks Over Thresholds:

Set threshold and model
level of exceedance
conditional on
exceedance;

Choices of threshold and
declustering length.

Two Common Approaches to Modeling

Extremes
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Block Maxima: Generalized Extreme

Value Distributions

GEV distributions have three parameters:

location ;

scale ;

shape .

μ

σ > 0

ξ

5 / 40



The shape parameter  is
particularly influential, as
the GEV distribution can
take on three shapes
depending on its sign.

Generalized Extreme Value

Distributions

ξ
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: Frechet (heavy-
tailed)

: Gumbel (light-
tailed)

: Weibull (bounded)

GEV Types

ξ > 0

ξ = 0

ξ < 0
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Peaks Over Thresholds: Generalized

Pareto Distributions

Similarly to the GEV distribution, the GPD distribution has three
parameters:

location ;

scale ;

shape .

μ

σ > 0

ξ
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: heavy-tailed

: light-tailed

: bounded

Generalized Pareto Distributions Types

ξ > 0

ξ = 0

ξ < 0
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Poisson-GP Processes

GPD model exceedances over threshold.

Often pair with Poisson processes to model the number of
exceedances in a unit period.
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GEV vs. PP-GP

GEV Model: For each time period, what is the largest event?

PP-GP: For each time period, how many exceedances of
threshold, and how large is each one?
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Return Levels

-period return level: How large is the expected event which
occurs with this frequency?

Alternative explanation: Exceedance probability of .

m

1 − 1/m
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Nonstationarity
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Climate Change and Nonstationarity

However, these models assume no long-term trend in the data,
so no change in the distribution of annual extremes.

This situation is called stationary: the underlying probability
distribution does not change over time.
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Climate Change and Nonstationarity

But climate change risks are fundamentally about dynamic
distributions!

Storm tracks/intensities

Frequencies of extremes (heat waves, droughts, atmospheric
rivers, etc.)

Correlations between extreme events
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Climate Change and Nonstationarity

But climate change risks are fundamentally about dynamic
distributions!

Storm tracks/intensities

Frequencies of extremes (heat waves, droughts, atmospheric
rivers, etc.)

Correlations between extreme events

This means that we need to consider nonstationarity: the
statistical model has a dependence on time (explicitly or
implicitly). 15 / 40



Testing for Nonstationarity

Commonly used: Mann-Kendall Test.

Null hypothesis (zero trend):

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(yi − yj),

S ∼ Normal(0,
2(2n + 5)

9n(n − 1)
)
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Aside: Null-Hypothesis Significance

Tests

Mann-Kendall fits into the framework of null-hypothesis
significance tests (NHST).

This aligns with falsificationist scientific paradigm. The test is
whether to reject a null hypothesis in favor of the existence of a
relationship.

Null hypothesis: Typically that the proposed relationship does
not exist.

Alternative hypothesis: The relationship does exist. 17 / 40



Aside: Null-Hypothesis Significance

Tests

For example:

Null: No effect in a regression model (coefficient is zero)

Alternative: Effect is non-zero

Or:

Null: No trend over time

Alternative: Trend exists
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Statistical Significance

The "significance" in NHST is based on the frequentist notion of
sampling distributions.

Goal: try to identify whether the pattern in your data is strong
enough that it likely did not emerge due to sampling chance.

This involves balancing Type I (false positive) and Type II (false
negative) error rates.
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Type I and Type II Errors

Null Hypothesis Is
True False

Decision About
Null Hypothesis

Don't
reject

True negative
(probability )

Type II error (false
negative, probability

)

Reject
Type I Error (false
positive, probability

)

True positive
(probability )

The significance level  is the probability of rejecting the null
hypothesis assuming that it is true (Type I errror).

1 − α
β

α
1 − β

α
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p-values

The p-value captures the probability of observing results at
least as extreme as observed under the null hypothesis.

Therefore, if a p-value is small (below ), it can mean:

1. The null hypothesis is not true for that data;

2. The null hypothesis is true and the data is an outlying sample.

Notice: the -value is itself a random variable; it is contingent
on the sample.

α

p
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p-values

What a p-value is not:

Probability that the null hypothesis is true (this is meaningless in
the frequentist paradigm);

Probability that the effect was produced by chance alone (a p-
value is conditional on the assumption that the null hypothesis is
true)

An indication of the effect size

These misunderstandings are behind the replication crisis...
22 / 40



Mann-Kendall Test

Null hypothesis (zero trend):

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(yi − yj),

S ∼ Normal(0,
2(2n + 5)

9n(n − 1)
)
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"Problems" with Mann-Kendall

However:

Mann-Kendall only suggests the presence of a trend, not its
magnitude (general problem with statistical significance tests:
what is the effect size?);

Doesn't work if the trend is oscillating.
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Alternative: Model Selection

We can also fit stationary and non-stationary models and see
how they perform, and select accordingly.

Will discuss fitting today, selection after break.
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Modeling Nonstationarity

Typically assume one (or more parameters) depend on another
variable which can vary in time.

For example, could model block maxima as , or
frequency of occurrence as .

Often these are linear or generalized linear models:

GEV(μ(t), σ, ξ)
Poisson(λ(t))

μ(t) = h(
n

∑
i=0

βit
i).
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Modeling Nonstationarity

While any parameters can be treated as nonstationary,
making models too complex can make them difficult to
constrain given limited extremes data.

Shape parameters are difficult to constrain normally, so are
often best left constant.
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Nonstationary Return Levels

Since we have a different model for each time , we get
different return levels for different times.

Contrast this with the stationary condition, in which we can just
speak of "return levels".

t
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What are the implications
of:

Nonstationary GEV?

Nonstationary Poisson
rate?

Nonstationary GPD?

Tide Gauge Example

Let's look at the San Francisco tide gauge data.
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Nonstationary BLock Maxima Model

Let's fit a GEV with a linear trend in time: ,
where  is in years.

μ(t) = β0 + β1t

t
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Nonstationary Block Maxima Model

Fit
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Stationary Block Maxima Model Fit
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Choice of Models
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Possible Covariates

The candidate set of covariates is going to depend on the
application.

For example, for storm surge, changes could be related to:

sea-surface temperatures

climate indices (North Atlantic Oscillation, Southern Oscillation)

local mean sea level

global mean temperature (as a broad proxy)

time (general trend)
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Space of Possible Models Is Difficult to

Constrain

Wong et al (2022)
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Space of Possible Models Is Difficult to

Constrain

Wong et al (2022)
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Key Takeaways
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Key Takeaways

Nonstationarity: Dynamic changes in the probability distribution

Can be particularly hard to model/constrain with extremes due
to limited data.

Wise to avoid changing shape parameters.

Nonstationary models can have very different return levels, so
there are real implications for risk management.

One possible path: adaptive decisions based on learning.
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Upcoming Schedule
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Upcoming Schedule

Wednesday: Discussion of Read & Vogel (2015).

Monday after break: Model selection
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